THE UNIVERSITY OF TEXAS MDANDERSON CANCER CENTER Making Cancer History®

High-Energy Photon Standard Dosimetry Data: A Quality Assurance Tool

David Followill, Ph.D. Jessica Lowenstein, M.S. Geoffrey Ibbott, Ph.D.

This investigation was supported by PHS grant CA10953 awarded by the NCI, DHHS.

Introduction

The Radiological Physics Center (RPC), through its on-site dosimetry reviews at institutions participating in NCI cooperative clinical trials, has accumulated high-energy photon dosimetry data for over 2350 photon beams. The measured values for percent depth dose, output factors, in-air off axis factors, wedge factors and tray factors have been collated for 81 different accelerator model/energy combinations for which we have 5 or more sets of measurements. For 56 of these combinations we have measurements on ten or more machines. The wedge and tray data come from 1087 Varian, Siemens and Philips/Elekta accelerators since 1985 and 343 tray transmission measurements since 1995. The data analyses indicate that for accelerator models of recent design the dosimetry data for a particular model/energy combination typically are within $\pm 2\%$. There is a larger spread in the data for the older models. A comparison of the RPC measured depth dose data with published depth dose data is presented with recommendations on which published data best represent each accelerator model/energy combination. The RPC "standard data" is defined as the mean value of 5 or more sets of dosimetry data or agreement with the published depth dose data (within 2%) for each model/energy combination. The RPC standard data can be used as a quality assurance tool to assist the Medical Physicist when commissioning an accelerator or identifying questionable dosimetry data.

Materials and Methods

Measurements were made on a series of Varian, Siemens and Elekta/Philips accelerators. The make and models of those listed here reflect those in current use and most often seen by the RPC.

- Varian Clinac 4/80, 4/100, 6/100, 6, 600C, 18, 1800, 20, 2100C, 21EX, 2300C, and 2500
- 2. Siemens Mevatron 6, 12, 20, 60, 63, 64, 67, 6740, 74, 77, KD series, MD series, MX series, and Primus
- 3. Elekta/Philips SL 75-5, 18, 20 and 25

Nominal energies from 4-25 MV, wedge angles from $15^{\circ} - 60^{\circ}$, thin and thick trays

Materials and Methods

The RPC tray transmission factor (TF) is defined as:

 $TF (10 \times 10, 5 * \text{cm}) = \frac{\text{tray ionization} (10 \times 10, 5 \text{ cm})}{\text{open ionization} (10 \times 10, 5 \text{ cm})}$

The RPC wedge transmission factor (WTF) is defined as:

WTF $(10 \times 10, 5 * \text{cm}) = \frac{\text{wedged ionization} (10 \times 10, 5 \text{ cm})}{\text{open ionization} (10 \times 10, 5 \text{ cm})}$

At 100 cm SSD/SAD in a water phantom. The WTF's ionization readings are averaged over heel-in and heel-out wedge orientations (if applicable) and centering of ion chamber is assured by measurements in multiple collimator orientations.

*For energies>15 MV, depth is 7 cm and after 1/2000 for all energies, depth is 10 cm.

Output factors and In air off axis factors

- OPF DATA -

ENERGY: 18 MV

MACHINE: Clinac 2100, Clinac 2100C, Clinac 2100CD - 18

	A	tDmax		_		
FIELD_SIZE	N	MIN	МАХ	MEAN	STD_DEV	(%)
6	115	0.9401	0.9564	0.945	0.0041	0.0043
10	154	1	1	1	0	0
15	147	1.0208	1.059	1.0398	0.0058	0.0056
20	152	1.0386	1.1108	1.0641	0.0087	0.0082
30	142	1.0554	1.1249	1.0923	0.0103	0.0095

IN-AIR OFF-AXIS FACTORS

MV cm

ENERGY:	18
DISTANCE:	100

MEAN STD_DEV DISTANCE_OAF Ν MIN MAX (%) 0 0 1 1 1 1 0 5 146 1.006 1.048 1.0253 0.0072 0.007 10 146 1.01 1.056 1.0359 0.0087 0.0084 15 142 1.01 1.071 1.0436 0.0123 0.0118

- OPF DATA -

ENERGY: 6 MV

MACHINE: Clinac 2100, Clinac 2100C, Clinac 2100CD - 6

IN-AIR OFF-AXIS FACTORS

ENERGY:	6 MV
DISTANCE	100 cm

DISTANCE_OAF 0	N 1	MIN 1	MAX 1	MEAN 1	STD_DEV 0	(%) 0
5	223	1.001	1.049	1.0306	0.0072	0.0069
10	223	1.015	1.082	1.0428	0.0098	0.0094
15	217	1.007	1.117	1.0561	0.0154	0.0146

Depth Dose Data

		Data	Max RPC	"Best Fit"	Range of
<u>Machine</u>	<u>Energy</u>	<u>Sets</u>	<u>Std. DeV.</u>	Published Data	<u>RPC/Rec.</u>
		•			
Clinac 2100	4	6	1.1%	BJR #17, 4 MV ⁺	-1.6% - 1.0%
Clinac 600	4	7	2.2%	Biggs ²	-0.3% - 0.7%
Clinac 4	4	248	1.6%	Peterson & Golden	0.0% - 0.7%
Clinac 4/100	4	44	1.6%	Biggs ²	-0.8% - 0.7%
Clinac 4 U/80	4	6	1.2%	U Filter report	0.1% - 1.4%
EMI 400	4	6	1.2%	?	
SHM 4	4	18	1.9%	BJR #11, 4 MV ³	-0.9% - 1.5%
SHM 400	4	7	1.3%	BJR #17, 4 MV⁴	-1.5% - 0.9%
Clinac 1800	6	101	0.8%	Barnes⁵	-0.4% - 0.7%
Clinac 2100	6	237	0.8%	Barnes⁵	-0.6% - 0.6%
Clinac 2100EX	6	14	0.7%	Fontenla ⁶	-0.9%0.1%
Clinac 2300	6	26	0.8%	Barnes⁵	-0.2% - 0.9%
Clinac 2500	6	24	1.1%	Barnes⁵	-0.3% - 1.0%
Clinac 6	6	63	2.3%	Fontenla ⁶	-0.8% - 0.0%
Clinac 6/100	6	192	1.3%	Coffey ⁷	-0.6% - 1.3%
			or	U. of Pennsylvania	-0.4% - 0.6%
Clinac 600C	6	74	1.0%	Fontela ⁶	-1.3% - 0.2%
Clinac 6X	6	16	1.7%	Dixon ⁸	-1.0% - 0.6%
Mevatron 6	6	40	2.0%	BJR #11, 6 MV ³	-1.2% - 0.2%
Mevatron 6700/6740	6	51	1.2%	BJR #11, 6 MV ³	-0.7% - 0.3%
Primus	6	15	0.7%	Al-Ghazi ⁹	-0.3%1.6%
			or	U. of North Carolina	-1.4% - 0.0%
Mevatron MXE	6	5	0.8%	Al-Ghazi ⁹	-1.4% - 0.2%
			or	U. of North Carolina	-0.8% - 0.4%
Mevatron MX	6	5	0.5%	Al-Ghazi ⁹	-0.9% - 1.2%
			or	U. of North Carolina	-0.6% - 0.7%
Mevatron KD	6	69	0.8%	Al-Ghazi ⁹	-0.9% - 0.3%
Mevatron MD	6	46	1.0%	Al-Ghazi ⁹	-1.5%0.1%
			or	U. of North Carolina	-0.9% - 0.4%
Saturn	6	5	1.5%	BJR #17, 6 MV ⁴	-0.7% - 1.8%

SL18	6	9	0.9%	BJR #11, 6 MV ³	-0.8% - 0.5%
SL20	6	16	1.5%	BJR #11, 6 MV ³	-0.3% - 0.7%
			or	Palta ¹³	-1.0%0.2%
SL25	6	23	1.6%	Palta ¹⁴	-0.6% - 0.2%
SL75	6	18	1.7%	BJR #11, 6 MV ³	-0.4% - 0.6%
Therac 6	6	26	1.1%	BJR #11, 6 MV ³	-0.4% - 1.3%
SL75	8	18	1.3%	BJR #17, 8 MV⁴	-0.1% - 1.7%
			better	Clatterbridge	-0.5% - 0.3%
Clinac 18	10	126	0.9%	Purdy ¹⁰	-0.3% - 0.0%
Clinac 1800	10	23	0.5%	Findley ¹¹	-0.5% - 0.7%
			or	Mayo Scottsdale	0.0% - 0.4%
Clinac 2100	10	48	0.7%	Findley ¹¹	-0.7% - 0.3%
			or	Mayo Scottsdale	-0.2% - 0.2%
Mevatron 12	10	30	1.1%	No published data, but	
	W	rong manufa	octurer	Purdy ¹⁰	-0.3% - 0.5%
Mevatron 74	10	37	0.6%	Keller ¹²	-0.7% - 0.7%
Mevatron KD	10	5	0.4%	Keller ¹²	0.4% - 1.1%
Mevatron MD	10	20	0.9%	Keller ¹²	-0.3% - 0.9%
Clinac 1800	15	17	0.6%	BJR #17, 16 MV ⁴	-1.0% - 0.4%
			or	U. of Cleveland	-0.5% - 0.9%
Clinac 2100	15	36	0.4%	BJR #17, 16 MV ⁴	-0.9% - 0.9%
			or	U. of Cleveland	-0.1% - 1.0%
Clinac 2100EX	15	6	0.4	BJR #17, 16 MV ⁴	-1.2% - 0.6%
			or	U. of Cleveland	-0.5% - 0.8%
Clinac 20	15	27	1.0%	BJR #17, 16 MV ⁴	-1.4% - 0.7%
			or	U. of Cleveland	-0.5% - 0.7%
Mevatron 77	15	13	0.7%	BJR #17, 16 MV ⁴	-0.2% - 1.4%
Mevatron KD	15	17	0.4%	BJR #17, 16 MV⁴	-0.6% - 1.0%
			or	U. of North Carolina	0.1% - 0.9%
Mevatron MD	15	23	0.7%	BJR #17, 16 MV^4	-1.1% - 0.8%
			or	U. of North Carolina	0.0% - 0.3%
Mevatron 20	15	5	0.6%	BJR #17, 16 MV⁴	-0.1% - 1.6%
SL75	16	5	0.5%	BJR #17, 16 MV ⁴	-0.9% - 0.6%
SL18	15	5	1.2%	BJR #17, 16 MV ⁴	-1.6% - 0.4%
Clinac 1800	18	59	0.4%	BJR #17, 21 MV ⁴	-0.4% - 0.8%
Clinac 2100	18	154	0.3%	BJR #17, 21 MV ⁴	-0.5% - 0.8%
Clinac 2300	18	6	0.4%	BJR #17, 21 MV ⁴	0.1% - 1.5%
Clinac 20	18	22	0.6%	BJR #17, 21 MV ⁴	-0.6% - 0.5%

Mevatron KD	18	14	1.2%	Al-Ghazi ⁹	-1.0% - 0.0%
Primus	18	10	0.3%	BJR #17, 16 MV ⁴	0.2% - 1.1%
Mevatron 77	18	7	1.2%	Palta ¹³	-0.6% - 0.5%
SL20	18	12	0.8%	BJR #17, 21 MV ⁴	-0.9% - 0.4%
Therac 20	18	28	0.5%	?	
Mevatron KD	20	8	0.6%	Palta ¹³	-0.3% - 0.3%
Clinac 2300	20	8	0.6%	BJR #17, 25 MV ⁴	0.1% - 1.6%
Mevatron KD	23	23	0.4%	BJR #17, 16 MV ⁴	-0.5% - 1.1%
Clinac 2500	24	24	0.3%	Banes⁵	-1.4% - 0.0%
SL25	25	19	0.6%	Palta ¹⁴	-0.3% - 0.1%
Therac 25	25	14	0.4%	Aldrich ¹⁵	-0.5% - 0.5%

Italics indicate that the recommended data is not published or is for a different manufacturer.

Standard Data References

¹M. Peterson and R. Golden, *Radiology* 103:675 (1972)

²P. J. Biggs, K. P. Doppke, J. C. Leong, and M. D. Russell, *Medical Physics*, 9:753 (1982)

³British Journal of Radiology, Supplement #11

⁴British Journal of Radiology, Supplement #17

⁵W. H. Barnes, D. B. Hammond, G. G. Janik, "Beam characteristics of the Clinac 2500", Presented at Varian User's Group meeting (1983) (Available from RPC)

⁶D. P. Fontenla, J.J. Napoli, and C. S. Chui, *Medical Physics*, 19:343 (1992)

⁷C. W. Coffey, II, J. L. Beach, D. J. Thompson, and M. Mendiondo, *Medical Physics*, 7:716 (1980)

⁸R. L. Dixon, R. E. Ekstrand, and W. J. Huff, *Int J Rad Onc Bio Phys*, 2:585 (1977)

⁹M. S. A. L. Al-Ghazi, B. Arjune, J. A. Fiedler, and P. D. Sharma, *Medical Physics*, 15:250 (1988)

¹⁰J. A. Purdy, W. B. Harms, and S. Fivozinsky, *Proceedings of the Fourth Annual Symposium on Computer Applications in Medical Care* (Nov 1980)

¹¹D. O. Findley, B. W. Forell, and P. S. Wong, *Medical Physics*, 14:270 (1987)

¹²B. Keller, D. Bassano, C. Mathewson, and P. Rubin, *Int J Rad Onc Bio Phys*, 1:69 (1975)

¹³J. R. Palta, J. A. Meyer, and K. R. Hogstrom, *Medical Physics*, 11:717 (1984)

¹⁴J. R. Palta, K. Ayyanger, I. Daftari, and N. Suntharalingham, *Medical Physics*, 17:106 (1990)

¹⁵J. E. Aldrich and J. W. Andrew, *Medical Physics*, 12:619 (1985)

Wedge Factors

Wedge Factors

Wedge Factors

Table I: Standard wedge Transmission Values for Varian Accelerators

	_				15	deg wed	ge	30 deg wedge		45	deg wed	ge	60 deg wedge			
Machine Model	Energy	<mark>%dd(10)</mark> _×	Std Dev	N	WTF	Std Dev	N	WTF	Std Dev	N	WTF	Std Dev	N	WTF	Std Dev	N
CI 4	4 MV	62.6	0.9	90	0.795	0.006	21	0.755	0.009	77	0.578	0.012	89	0.489	0.011	78
CI 4/100	4 MV	63.6	0.6	31	0.776 0.805	0.008 0.006	7 16	0.736 0.764	0.004 0.006	6 16	0.495 0.589	0.011 0.005	10 16	0.491	0.012	15
CI 600C	4 MV	63.7	0.5	8	0.769	0.011	4	In	sufficent D	ata	0.477	0.004	5	0.394	0.008	5
CI 6, CI 6X	6 MV	66.5	1.2	38	0.780 0.827 0.873	0.008 0.003 0.004	3 8 6	0.627 0.777	0.003 0.009	5 17	0.617 0.651	0.008 0.008	9 11	0.425 0.459	0.004 0.008	4 26
CI 6/100	6 MV	66.3	0.6	140	0.780 0.823	0.002 0.006	9 80	0.643 0.704 0.783	0.015 0.005 0.007	27 4 78	0.481 0.569 0.614	0.010 0.006 0.008	32 6 98	0.418 0.455	0.005 0.009	24 110
CI 600C	6 MV	66.6	0.5	66	0.708 0.780	0.002 0.002	8 27	0.545 0.631	0.003 0.004	8 37	0.499	0.007	62	0.418	0.005	54
CI 18	10 MV	73.7	0.5	63	0.892	0.007	45	0.752 0.803	0.009 0.005	8 50	0.696	0.007	20	0.511	0.005	56
CI-1800	6 M∨	68.7	2.4	89	0.788	0.013	49	0.638 0.706	0.006 0.009	52 9	0.485 0.572	0.006 0.008	72 13	0.419	0.006	74
CI-1800	10 MV	74.4	0.3	16	0.814 0.850	0.004 0.004	6 5	0.681 0.751	0.002 0.005	6 4	0.536 0.626	0.006 0.007	10 6	0.451	0.003	13
CI-1800	15 MV	77.1	0.2	18	0.824	0.003	12	0.697	0.003	12	0.556	0.003	15	0.449	0.006	15
CI-1800	18 M∨	80.6	0.2	52	0.830	0.004	25	0.706	0.004	28	0.514 0.570 0.652	0.010 0.004 0.007	7 40 5	0.443	0.006	43
CI-20	15 MV	76.8	0.7	20	0.854	0.004	10	0.758	0.004	11	0.642	0.006	17	0.452	0.004	14
CI-20	18 MV	80.0	0.4	14	0.859	0.002	10	0.767	0.003	10	0.650	0.003	13	0.442	0.007	14

		_			15	deg wed	ge	30	l deg wed	ge	45	deg wed	leg wedge		60 deg wedge	
Machine Model	Energy	%dd(10) _x	Std Dev	N	WTF	Std Dev	N	WTF	Std Dev	N	WTF	Std Dev	N	WTF	Std Dev	N
CI-2100,	4 MV	62.1	1.0	19	0.664	0.003	2	0.490	0.004	2	0.432	0.009	6	0.357	0.005	5
CI-2100, CI-2100 C, 2100 CD	6 MV	67.4	0.4	180	0.711 0.783	0.004 0.007	14 53	0.547 0.632	0.003 0.008	6 94	0.493 0.507	0.009 0.006	178 24	0.414	0.006	147
CI-2100 CI-2100 C, 2100 CD	10 MV	73.9	0.3	38	0.751 0.813	0.002 0.002	3 16	0.602 0.680	0.002 0.003	3 16	0.530	0.006	34	0.448	0.005	23
CI-2100 CI-2100 C, 2100 CD	15 MV	77.3	0.2	28	0.820	0.008	18	0.692	0.008	23	0.527 0.554	0.004 0.003	23 5	0.445	0.007	24
CI-2100 CI-2100 C, 2100 CD	18 MV	80.4	0.9	110	0.768 0.827	0.003 0.006	12 42	0.629 0.703	0.002 0.005	15 54	0.521 0.566	0.005 0.003	88 19	0.439	0.006	92
CI-21EX	6 MV	66.4	0.2	31	Ins	sufficent Da	ata	In	sufficent Da	ata	0.490	0.004	19	0.405	0.004	18
CI-21EX	15 MV	78.0	0.4	15	Ins	sufficent Da	ata	In	sufficent Da	ata	0.523	0.002	7	0.434	0.001	7
CI-21EX	18 MV	82.0	0.2	6	Ins	sufficent Da	ata	In	sufficent Da	ata	0.516	0.001	6	0.427	0.001	6
CI-2300 CI-2300C, 2300 CD	6 MV	67.4	0.4	35	0.773	0.007	12	0.625	0.008	15	0.493	0.012	33	0.408	0.010	22
CI-2300 CI-2300C, 2300 CD	15 MV	77.4	0.3	10	0.813	0.005	6	0.684	0.005	6	0.531	0.014	9	Ins	sufficient Da	ata
CI-2300 CI-2300C, 2300 CD	18 MV	80.5	0.2	15	Ins	sufficent Da	ata	0.700	0.005	6	0.519	0.003	8	0.430	0.010	10
CI-2500, 2500C	6 MV	67.6	0.5	23	0.783 0.821	0.004 0.003	11 6	0.635 0.709	0.005 0.005	12 7	0.489 0.577	0.006 0.005	13 8	0.419	0.005	20
CI-2500, 2500C	24 MV	84.4	0.3	22	0.832 0.861	0.005 0.004	11 6	0.710 0.770	0.004 0.006	11 7	0.508 0.578 0.658	0.004 0.003 0.006	5 7 9	0.428	0.004	19

	a noug				15 deg wedge 30 deg wedge		45 dea wedae		60 dea wedae							
Machine Model	Energy	%dd(10) _*	Std Dev	N	WTF	Std Dev	N	WTF	Std Dev	N	WTF	Std Dev	N	WTF	Std Dev	N
Mev 12	8 MV	71.7	0.8	6	Ins	sufficent Da	ata	Ins	ufficent Da	ita	0.694	0.007	5	Ins	sufficent D	ata
Mev 12	10 M∨	74.1	8.0	13	Ins	sufficent Da	ata	0.719	0.004	9	0.696	800.0	11	0.685	0.005	12
Mev 20	15 MV	78.1	0.5	5	Ins	sufficent Da	ata	Ins	ufficent Da	ita	0.640	0.006	5	0.611	0.004	5
Mev 6	6 M∨	67.3	0.9	13	Ins	sufficent Da	ata	0.684	0.009	12	0.636	0.008	3	Ins	ufficent D	ata
Mev 60, 63, 64	4 M∨	61.9	1.6	9	0.705	0.003	6	0.638	0.007	3	0.513	0.006	6	0.481	0.005	5
Mev 67, 6740	6 M∨	67.6	0.6	43	0.685 0.742	0.004 0.005	5 20	0.523 0.714	0.005 0.005	5 25	0.317 0.563	0.007 0.005	11 31	0.350 0.535	0.003 0.006	5 29
Mev 74, 77	10 MV	74.7	0.6	33	0.782	0.002	19	0.757	0.003	25	0.388 0.620	0.007 0.003	5 28	0.592	0.004	26
Mev 77	15 MV	78.0	0.3	12	0.794	0.002	10	0.770	0.003	11	0.637	0.005	12	0.608	0.004	10
Mev 77	18 MV	80.8	0.4	7	0.802	0.003	5	0.777	0.002	5	0.647	0.003	6	0.619	0.003	7
Mev KD, KD2, KDS	6 M∨	67.6	0.4	179	0.683 0.745	0.004 0.003	13 14	0.520 0.716	0.005 0.004	21 18	0.317 0.565	0.006 0.005	40 24	0.345 0.538	0.008 0.006	34 22
Mev KD, KD2, KDS	10 M∨	75.6	0.5	16	0.73	0.001	3	0.581	0.004	4	0.379	0.005	5	0.406	0.007	4
Mev KD, KD2, KDS	15 MV	77.5	0.3	20	0.745 0.795	0.001 0.004	5 5	0.599 0.770	0.003 0.002	7 5	0.397 0.633	0.003 0.002	10 6	0.428 0.611	0.003 0.006	9 6
Mev KD, KD2, KDS	18 M∨	78.2	0.8	23	0.741	0.004	2	0.595 0.773	0.005 0.005	3 3	0.401 0.635	0.005 0.002	6 2	0.414 0.433 0.612	0.003 0.002 0.003	2 3 3
Mev KD, KD2, KDS	23 MV	80.5	0.8	55	0.753	0.004	7	0.607 0.778	0.004 0.002	9 3	0.406 0.645	0.005 0.003	17 4	0.426 0.441 0.622	0.002 0.002 0.001	7 9 2
Mev MD, MD2	6 M∨	67.4	0.4	112	0.682 0.739	0.005 0.004	11 9	0.521 0.646 0.711	0.006 0.005 0.005	15 3 8	0.316 0.491 0.560	0.006 0.007 0.005	30 3 11	0.344 0.532	0.008 0.005	51 10
Mev MD, MD2	10 MV	75.1	0.5	57	0.731 0.782	0.004 0.004	7 5	0.580 0.698 0.761	0.004 0.001 0.003	8 2 3	0.378 0.551 0.625	0.005 0.003 0.003	13 3 4	0.405 0.428 0.597	0.006 0.004 0.003	12 3 3
Mev MD, MD2	15 M∨	77.1	0.5	53	0.742	0.004	4	0.598 0.768	0.008 0.002	8 2	0.394 0.634	0.005 0.004	17 5	0.423 0.607	0.007 0.005	15 5
Mev MX, MX2, MXE	6 M∨	67.8	0.5	22	Ins	ufficent Da	ata	Ins	ufficent Da	ita	0.317 0.338	0.007 0.006	5 5	0.346	0.009	5
Primus	6 MV	67.0	0.3	48	0.691	0.003	7	0.528	0.003	7	0.321	0.003	11	0.352	0.004	11
Primus	18 M∨	78.8	0.2	31	0.753	0.003	5	0.607	0.001	5	0.404	0.001	6	0.435	0.003	6

Table 2: Standard wedge Transmission Values for Siemens Accelerators

					60) deg wedg	je
Machine Model	Energy	<mark>%dd(10)</mark> _x	Std Dev	N	WTF	Std Dev	N
SL 18	6 M∨	68.0	0.7	7	0.269	0.005	7
SL18	15 MV	77.2	0.8	7	0.283	0.004	7
SL 20	6 MV	68.0	0.8	19	0.271	0.007	13
SL 20	18 MV	79.3	0.4	12	0.279	0.007	11
SL 25	6 MV	68.1	1.0	15	0.270	0.004	14
SL 25	25 MV	83.5	0.3	12	0.268	0.005	13
SL 75-5	6 M∨	68.1	0.3	15	0.261	0.010	14

Table 3: Standard wedge Transmission Values for Philips Accelerators

STANDARD AVERAGE THIN TRAY FACTORS

5

Tray Factors

5

÷

Machine	Energy	Ave IR	Std Dev IR	Ave TF	std dev	Ν
Clinac 18	10	0.733	0.005	0.970	0.009	6
Clinac 1800	6	0.676	0.006	0.967	0.007	16
	10	0.739	0.005	0.975	0.009	3
	15	0.760	0.001	0.980	0.007	4
	18	0.784	0.002	0.979	0.004	10
Clinac 2100C	6	0.674	0.004	0.966	0.008	60
·	10	0.736	0.004	0.973	0.007	12
	15	0.760	0.002	0.976	0.007	11
	18	0.783	0.002	0.978	0.005	36
Clinac 2300C	6	0.674	0.003	0.964	0.008	13
	18	0.774	0.004	0.980	0.007	11
Clinac 2500	6	0.678	0.005	0.972	0.003	4
•	24	0.804	0.002	0.984	0.002	4
Clinac 4	4	0.620	0.015	0.961	0.007	23
Clinac 6/100	6	0.663	0.006	0.969	0.007	18
Clinac 600C	6	0.667	0.005	0.969	0.002	10
Mev 67 series	6	0.674	0.005	0.960	0.013	10
Mev KD	6	0.675	0.003	0.959	0.008	13
•	15	0.763	0.004	0.970	0.003	4
	18-23	0.782	0.003	0.978	0.009	7
Mev MD	6	0.673	0.005	0.955	0.006	11
	10	0.746	0.003	0.966	0.003	8
·	15	0.760	0.003	0.972	0.011	3
Philips units	6	0.681	0.017	0.957	0.016	29
	15	0.761	0.006	0.969	0.004	4
	18-25	0.785	0.010	0.972	0.007	13
Theratron 780	Co-60	0.572		0.942	0.019	13

Results

- The wedge transmission data for the manufacturer's standard wedges on most makes and models of accelerators exhibit a gaussian distribution with a standard deviation of $\pm 2\%$.
- The distribution of the wedge transmission factor data is often bimodal exhibiting more than one standard factor for each wedge angle.
- Some of the wedge transmission data for differing makes and models of accelerators for a specific manufacturer, dependent on energy and wedge angle, are in good agreement.
- The tray transmission data, is not dependent on make and model of accelerator, but rather the beam energy.
- There appear to be two types of trays in clinical use today; thin and thick trays.
- Accelerators of the same Make/Model/energy combination have the same dosimetric properties in terms of depth dose data and FSD.

Conclusions

- 1. For each combination of energy, and accelerator make and model, a "standard" percent depth dose, mean output factors, and in-air off axis factors can be assigned.
- 2. For each combination of nominal wedge angle, energy, and accelerator make and model, a "standard" wedge transmission factor can be assigned.
- 3. Frequently, there is more than one "standard" wedge transmission factor for a given make and model of accelerator. (The RPC has not captured data to determine whether the different wedges represent different sizes, composition or location of wedges).
- 4. The same or similar wedges are used on different makes and models of accelerators by the same manufacturer.
- 5. There are two types of blocking trays in clinical use today, thin and thick trays.
- 6. These percent depth dose, mean output factors, in-air off axis factors, standard wedge and tray transmission values provide a good redundant check of an institution's own measured values.
- 7. With few exceptions, these data can be used to predict the percent depth dose, output factors, in-air off axis factors, wedge and tray transmission factors for most wedges and trays in clinical use today to within \pm 2%.