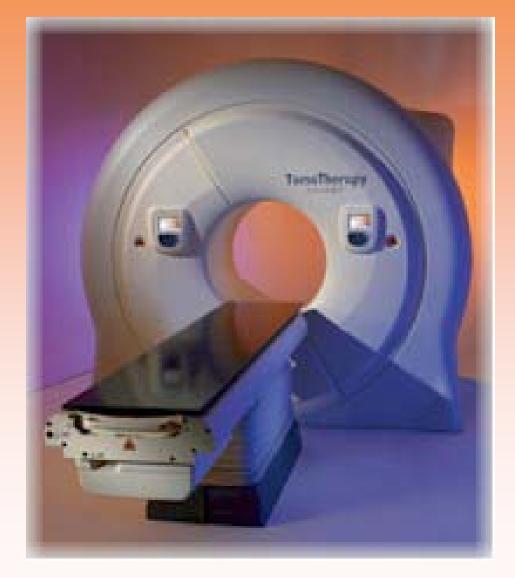


Clinical Reference Dosimetry of a "Hi-Art II Helical Tomotherapy Machine

David Followill, Ph.D.

Andrea Molineu, M.S.


John McGary, Ph.D,

Geoffrey Ibbott, Ph.D.

Statement of the Problem

- Factory sets the dose rate, not the local physicist.
- Rigorous implementation of TG-51 not possible.
- Can not meet state regulations to perform an annual calibration.

WHY?

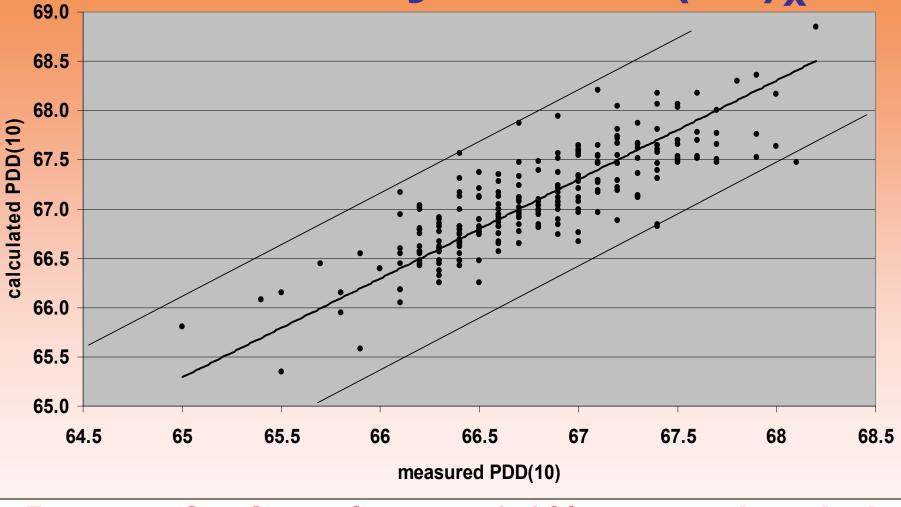
TG-51 requires a beam quality to be defined at 100 cm SSD, 10 x 10 cm², 10 cm depth. Tomotherapy unit has physical limitations/differences 1. 85 cm SAD Maximum field size 40 x 5 cm² 2. 3. Un-flattened beam Different energy spectrum 4. **Bottom line: TG-51 reference conditions can** not be met

Proposed Methodology

1. Measure the ionization ratio (TPR²⁰₁₀) for 85 cm SAD, 40 x 5 cm² (eq. sq. 8.3 x 8.3)

Nominal Energy	4 MV	Tomo. 6 MV	6 MV
IR	0.615	0.635	0.672
dmax	1.2 cm	1.3 cm	1.5 cm

Proposed Methodology


2. Calculate the %dd(10)_x using the empirical relationship published in the IAEA TRS 398 protocol.

Independent of SSD

 $%dd(10)_{x} = 98.34(TPR_{10}^{20})^{2} - 39.084(TPR_{10}^{20}) + 49.093$

Gives you an equivalent $%dd(10)_x$ for 100 cm SSD, 8.3 x 8.3 cm², 10 cm depth

Uncertainty in %dd(10)_x

Range of calc. values \Rightarrow 0.2% uncertainty in k_o

Additional Uncertainty in k_Q Measurement for 40 x 5 (eq. sq. 8.3) instead of 10 x 10 as required by TG-51.

Standard linac, 6 MV x-ray beam.

	10 x 10	10 x 10	40 x 5
	measure	measure TPR	measure TPR
	%dd(10)	calc. %dd(10)	calc. %dd(10)
%dd(10) _x	66.8	67.1	66.5
k _Q	0.995	0.995	0.996

Field size difference ⇒ 0.1% uncertainty in k_Q

Proposed Methodology

3. Perform the calibration measurement at d_{max} or 10 cm depth.

- calibration at d_{max} reduces the uncertainty introduced using the clinical depth dose.

- calibration at d_{max} increases the uncertainty in the k_Q value minimally(<0.05%).

 calibration at 10 cm depth more closely follows the TG-51 protocol and reduces the uncertainty in k_Q.

Other Proposed Techniques and Uncertainties Associated with each

	Jera	aj et. al.	Thomas	et. al.	RPC
Measured Dose Rate (cGy/min)	8	79.6	885.	.6	882.7
For 10 x 5 cm 0.997±0.001	2	-	%dd(10) _x for SSD, 10 x 10		%dd(10) _x for SSD, 8.3 x 8.3
Change in k _Q (ref vs meas) 0.996 – 0.998					
K _{tot} Correction for 7 0.994 – 0.997		_	x _Q (ref vs meas) 3 - 0.999		termine k _q ertainty 0.3%

TLD Verification

Dosimeter	RPC	Institution	RPC/Inst. ratio
lon chamber	882.7 cGy/min	890.6 cGy/min	0.991
TLD block (n=4)	444.8 cGy (±1.9)	444.9 cGy	1.000
TLD cylinder (n=7)	198.7 cGy (±1.3)	200 cGy	0.993

- 1.Three methods exist to perform reference dosimetry on the Hi-Art Helical Tomotherapy machine.
- 2. All 3 methods give dose rates that are within 0.5% of each other.
- 3.The RPC can verify the calibration with its TLD program either with the cylindrical or block phantom.

Thank You

