Peter Dunscombe, Ph.D. University of Calgary/ Tom Baker Cancer Centre

Refresher Course: RC222

IMRT: Patient Safety and Error Reduction

Radiological Society of North America Annual Meeting

26th November 2007

Peter Dunscombe

No relevant financial relationships PI on collaborative research agreement with Varian

Acknowledgements

Dr. David L. CookeAmanda Korenowski

Who needs to learn?

Individuals

Institutions

Why learn?

•Individuals – so they can do their jobs better

•Institutions – so they can allocate resources appropriately

Where are the lessons?

Local experienceGlobal experience

Where are the lessons?

Local experience

We need the local experience because institutional cultures vary widely, particularly in regards to risk management.

Where are the lessons?

•Global experience

We need the global experience because radiation therapy is very safe and accidents are infrequent.

Presentation Objectives

1. To analyze a real incident using a formalized Incident Learning System.

2. To summarize Basic Causes based on local, institutional experience.

3. To discuss a potentially global approach to incident learning

Presentation Outline

- 1. An Application of an Incident Learning System
- 2. Local Learning An Analysis of Basic Causes
- 3. Global Learning the AAPM Working Group on the Prevention of Errors and ROSIS
- 4. Local and Global Learning are the lessons different?
- 5. Conclusions

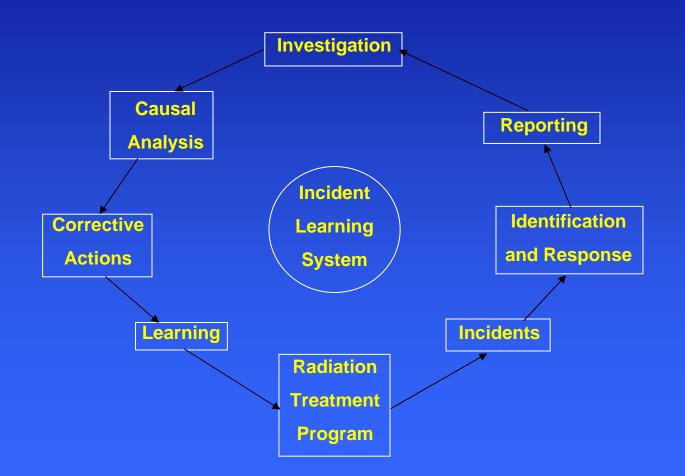
Presentation Outline

- 1. An Application of an Incident Learning System
- 2. Local Learning An Analysis of Basic Causes
- 3. Global Learning the AAPM Working Group on the Prevention of Errors and ROSIS
- 4. Local and Global Learning are the lessons different?
- 5. Conclusions

A Reference Guide for Learning from Incidents in Radiation Treatment

David L. Cooke, Meina Dubetz, Rahim Heshmati, Sandra Iftody, Erin McKimmon, Jodi Powers, Robert C. Lee, Peter Dunscombe

The Alberta Heritage Foundation for Medical Research


HTA Initiative #22

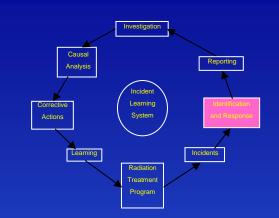
www.ihe.ca/hta/publications.html


What is an Incident?

An incident is an unwanted or unexpected change from a normal system behavior, which causes, or has a potential to cause, an adverse effect to persons or equipment

The Incident Learning System

Identification

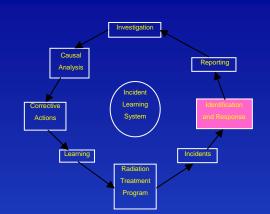

•An incident was first noted during a dynamic arc treatment (Day -3).

•An MLC collision interlock occurred during the first treatment of a patient

•Three days later a therapist on the unit reported to a physicist that he thought the leaves were not moving as they should during one of the dynamic arcs (Day 0).

•This observation was checked by a physicist and confirmed

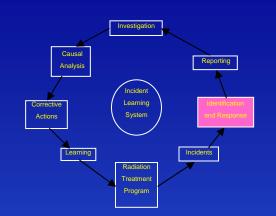
Identification



• The MLC leaves moved as planned in one quadrant of the gantry motion

•In the other quadrant the leaves were stationary until the end of the arc at which time they assumed the correct positions.

•This behaviour was reproducible.

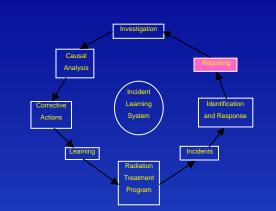

Clinical Team notified on Day 0

•Over a weekend the 13 patients possibly affected were replanned (Day 2)

•Service engineers arrive on site (Days 2 and 3)

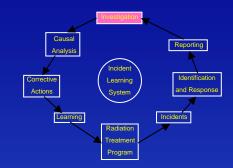
•Senior Management notified on Days 3 and 4

Response

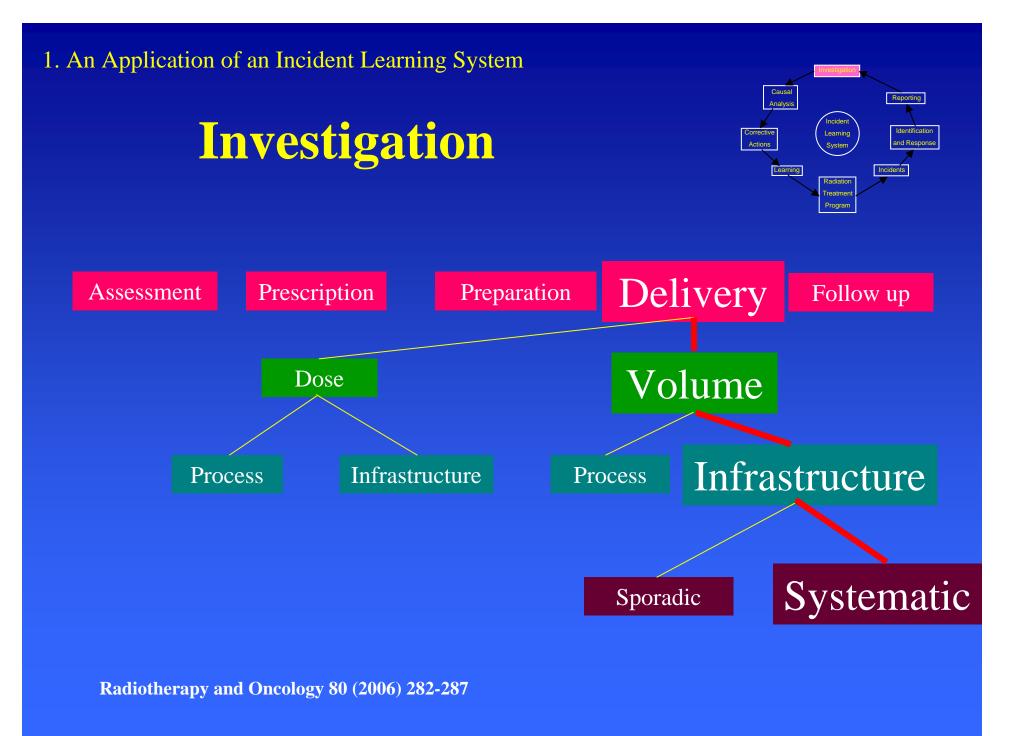


•Unit returned to limited service (Day 4)

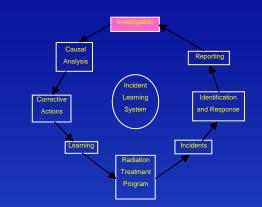
•Involved patients notified between Days 6 and 14.


•Independent Review Committee established on Day 14

Reporting


- The Incident was reported as
- •Affecting patients
- •Clinical
- •Occurring during treatment
- •Actual minor severity: potentially major severity

Investigation



- Review Committee comprised one Radiation Oncologist, three Patient Safety Experts and one Medical Physicist.
- Several patients were affected.

• The initial Incident classification was confirmed as occurring at Delivery, affecting the Volume prescription element, caused by an Infrastructure problem and was Systematic.

Investigation

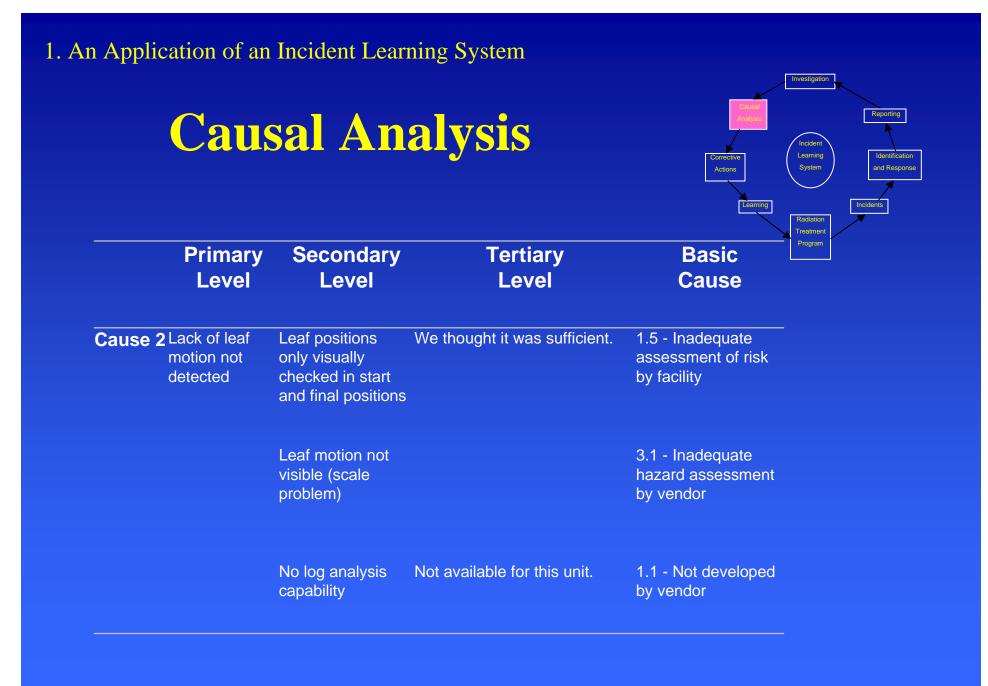
• Replanning all patients indicated only minimal changes to doses to the target volumes and critical structures.

• Medical assessment concluded that no change in clinical outcome for any patient could be expected.

Basic Causes Table

Job Factors					
1. Standards/Procedures/Practices 2. Materials/Tools/Equipment 3. Design 1.1 Not developed 2.1 Availability 3.1 Inadequate 1.2 Inadequate standard/ 2.2 Defective 3.1 Inadequate procedure/practice 2.3 Inadequate maintenance 3.2 Inadequate 1.4 Inadequate communication of 2.5 Used incorrectly 3.3 Design 1.5 Inadequate assessment of risk 2.6 Inadequate assessment of 3.3 Design proc 1.6 Not implemented 5.3 Inadequate assessment of risk 5.4 Inadequate 5.5 Inadequate Systemic/Management Factors 5.5 Systemic/Management Factors 5.5 Systemic/Management Factors 5.5 Systemic/Management Factors	t design n cess not assessment ic impact assessment nal				
4. Planning 5. Communication 6. Knowledge/Skill 4.1 Inadequate work planning 5.1 Unclear roles, 6.1 Inadequate 4.2 Inadequate management of 5.2 Lack of communications 6.2 Training needs 4.3 Conflicting priorities/ 5.2 Lack of communications 6.3 Lack of coach 9 planning/ programming 5.3 Inadequate direction/ 6.4 Failure to recommunications 4.4 Inadequate assessment of 5.4 Misunderstood 6.4 Failure to recommunications 4.5 Inadequate documentation 5.4 Misunderstood 6.5 Inadequate assessment of 4.6 Personnel availability Fersonal Factors Natural Factors	ls not ning ognize ssessment of				
7.Capabilities (height, strength, weight, etc.)8.Judgment 8.19.Natural Factors 9.17.1Physical capabilities (height, strength, weight, etc.)8.Judgment hazard9.Natural Factors 9.29.17.2Sensory deficiencies (sight, sound, sense of smell, balance, etc.)8.2Conflicting demands/ priorities 8.39.Natural Factors 9.29.17.3Substance sensitivities/ allergies8.5Criminal intent 8.69.4Extreme weat 9.50.4	her				

Investigation


Incident Learning

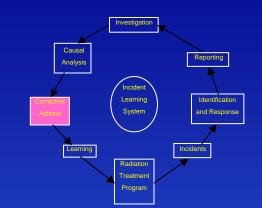
System

Radiatior ⁻reatmen Program Reporting

Identificatio

Application of an	Incident Lear		Corrective Actions Learning	Investigation Repo
Primary Level	Secondary Level	Tertiary Level	Basic Cause	Treatment Program
Cause 1 Mismatched software	Installation procedures not followed		Standard Procedure not followed by vendor	
	Acceptance procedures did not check for software compatibility		Inadequate Procedure supplied by vendor	
	No knowledge of bulletin/alert	No management of bulletin/alert receipt or update of historical documents.	Unknown for vendors	
		No ownership of bulletin/ alert dissemination/archive/ interpretation.	Not developed by facility	

Corrective Actions


Basic Cause:

No ownership developed for dissemination/archiving/interpretation of bulletins and alerts – standards and procedures not developed by user

Corrective Action:

Develop procedures for managing and distributing vendor and regulatory alerts and bulletins.

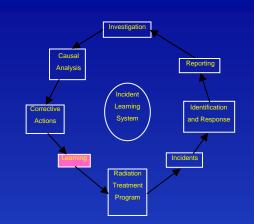
Corrective Actions

Basic Cause:

Leaf motion not visible – inadequate hazard assessment

Corrective Action:

Recommend to a vendor that a certain functionality be improved.


Learning

• A brief description of the incident and the recommended corrective actions were available locally.

• Most of the learning took place within the specialist groups of physicists, electronics technologists and computer specialists responsible for radiation therapy infrastructure.

Learning

• Sharing detailed information even within the organization was not possible for legal reasons.

• Legal barriers to organizational learning may be compromising patient safety.

Closure

Ten Corrective Actions were recommended to address all the issues raised through the Basic Cause analysis.

Six Corrective Actions were the development of new Policies and Procedures.

PROBLEM SOLVED!

Presentation Outline

- 1. An Application of an Incident Learning System
- 2. Local Learning An Analysis of Basic Causes
- 3. Global Learning the AAPM Working Group on the Prevention of Errors and ROSIS
- 4. Local and Global Learning are the lessons different?
- 5. Conclusions

Local Learning – An Analysis of Basic Causes

Data Source:

•Facility delivers 3,000 courses of radiation therapy per year on 10 machines

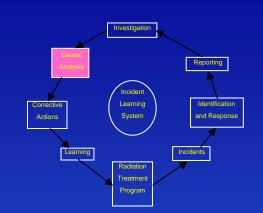
•The Radiation Treatment Program has a staff of 200

•263 Incidents were reported over an 18 month period


Local Learning – An Analysis of Basic Causes

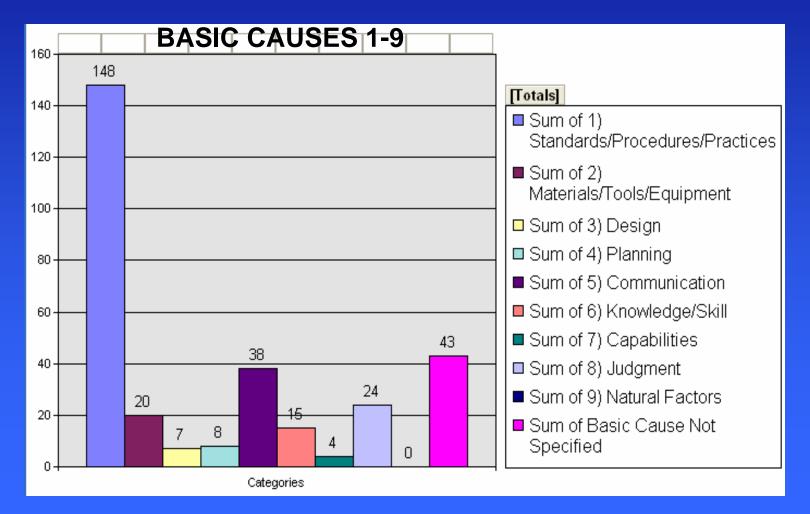
Objective of this study:

To see if there are lessons for the institution from an analysis of the Basic Causes of these 263 Incidents.


2. Local Learning – An Analysis of Basic Causes

The Incident Learning System

2. Local Learning – An Analysis of Basic Causes

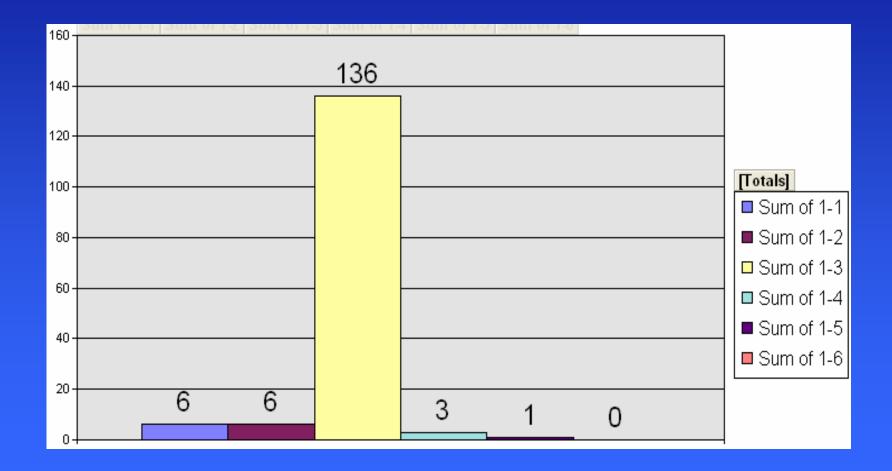

All 263 Incidents were entered into an Access® database for analysis

2. Local Learning – An Analysis of Basic Causes

What Were The Basic Causes? (ILS)

Job Factors						
 Standards/Procedures/Practices Not developed Inadequate standard/ procedure/practice Standard/procedure/ practice not followed Inadequate communication of procedure Inadequate assessment of risk Not implemented Systemic/Management Factors 	 Materials/Tools/Equipment Availability Defective Inadequate maintenance Inspection Susci incorrectly Inadequate assessment of material/tools/ equipment for task Design Inadequate hazard assessment Inadequate design specification Design process not specification Inadequate assessment of material/tools/ equipment for task Inadequate assessment Inadequate assessment of orgonomic impact Inadequate assessment of operational capabilities .6.					
 Planning 5. 1 Inadequate work planning 2 Inadequate management of change Conflicting priorities/ planning/ programming Inadequate assessment of needs & risks Inadequate documentation Personal Factors 	Communication6.Knowledge/Skill5.1Unclear roles, responsibilities, and accountabilities6.1Inadequate training/orientation5.2Lack of communications6.2Training needs not identified5.3Inadequate direction/ information6.3Lack of coaching5.4Misunderstood communications6.4Failure to recognize hazard6.5Inadequate assessment of needs and risks6.5					
 7. Capabilities 8. 7.1 Physical capabilities (height, strength, weight, etc.) 7.2 Sensory deficiencies (sight, sound, sense of smell, balance, etc.) 7.3 Substance sensitivities/allergies 	Judgment9.Natural Factors8.1Failure to address recognized hazard9.1Fires 9.28.2Conflicting demands/ priorities9.3Earthquake8.3Emotional stress9.4Extreme weather8.4Fatigue9.5Other8.5Criminal intent8.6Extreme judgment demands8.7Substance abuseSubstance abuseSubstance abuse					

What Were The Basic Causes? (ILS)


**TOTAL Incident Reports in this study = 263

What Were The Basic Causes? (ILS)

Standards/Procedures/Practices (~67%) Communication (~17%) Judgment (~11%) Materials/Tools/Equipment (~9%) Knowledge/Skill (~7%) Planning (~4%) Design (~3%) Capabilities (~2%) Natural Factors (0) DID NOT SPECIFY: 43 / 263 = -16%

**Percentages based on the reports that DID specify a basic cause (Total 220).

Why Was Basic Cause 1 So High?

**TOTAL Incident Reports in this study = 263

Why Was Basic Cause 1 So High?

- Standards/Procedures/Practices
 - 1.1 Not developed (<3%)
 - 1.2 Inadequate standard/ (<3%) procedure/practice
 - 1.3 Standard/procedure/ practice (~62%) not followed
 - 1.4 Inadequate communication of (~1%) procedure
 - 1.5 Inadequate assessment of risk (<1%)
 - 1.6 Not implemented (0)

**Percentages based on the reports that DID specify a basic cause (Total 220).

An Observation

Writing Policies and Procedures in response to an Incident may not solve the problem at all.

Presentation Outline

- 1. An Application of an Incident Learning System
- 2. Local Learning An Analysis of Basic Causes
- 3. Global Learning the AAPM Working Group on the Prevention of Errors and ROSIS
- 4. Local and Global Learning are the lessons different?
- 5. Conclusions

Global Learning –the AAPM Working Group on the Prevention of Errors and ROSIS

•The AAPM established a Working Group on the Prevention of Errors in Radiotherapy in 2005

•In recognition of the importance of learning from the experience of others, a recurring theme of discussions has been the establishment of a shared database of Incidents.

•As such a database (ROSIS) already exists, it makes sense to explore possible collaboration.

3. Global Learning - WGPE and ROSIS

Introduction to ROSIS

- Radiation Oncology Safety Information System
- <u>http://www.rosis.info</u>
- ROSIS began in 2001, funded by ESTRO European Society for Therapeutic Radiology and Oncology

3. Global Learning - WGPE and ROSIS

Introduction to ROSIS

The architects of ROSIS are: Dr Ola Holmberg, Copenhagen, Denmark, Dr Tommy Knöös, Lund, Sweden, Mrs Mary Coffey, Dublin, Ireland Ms Joanne Cunningham, Dublin, Ireland

3. Global Learning - WGPE and ROSIS

Introduction to ROSIS

- Voluntary, anonymous, web-based reporting system
- ~75 participating centres, over 1000 incidents reported
- Newsletters sent out with "spotlight cases". Anyone can search the database by keyword or view all reports

Global Learning –the AAPM Working Group on the Prevention of Errors and ROSIS

•The WGPE and ROSIS are currently exploring the possibility of collaborating on an Incident Database which would meet both European and North American needs.

Presentation Outline

- 1. An Application of an Incident Learning System
- 2. Local Learning An Analysis of Basic Causes
- 3. Global Learning the AAPM Working Group on the Prevention of Errors and ROSIS
- 4. Local and Global Learning are the lessons different?
- 5. Conclusions

Local and Global Learning – are the lessons different?

Data Sources:

•The Incident Learning System

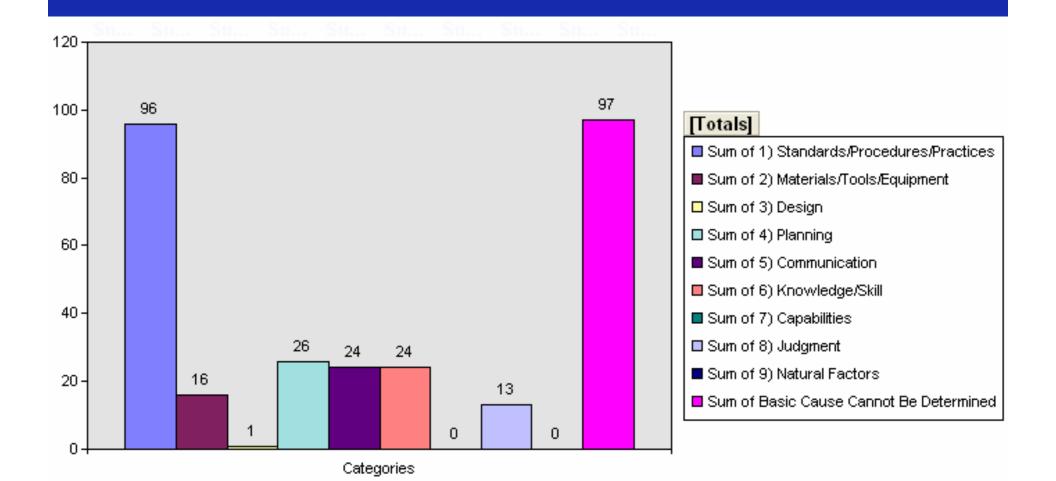
•The ROSIS database

•Over 250 reported Incidents to each data base were analyzed

Local and Global Learning – are the lessons different?

Objective of this study:

To compare the Basic Causes of Incidents reported to the Incident Learning System and the ROSIS database.


ROSIS Data Analysis

- Randomly started at ROSIS IncidentID number 600, until there were no more reports (IncidentID number 884)
- TOTAL = 276
- Incident reports were only grouped into a Basic Cause category if details on the ROSIS form could clearly support the choice

ROSIS Data Analysis

- Incidents were only grouped into the general Basic Cause categories, 1 9
 - 1. Standards/Procedures/Practices
 - 2. Materials/Tools/Equipment
 - 3. Design
 - 4. Planning
 - 5. Communication
 - 6. Knowledge/Skill
 - 7. Capabilities
 - 8. Judgment
 - Natural Factors

What Were The Basic Causes? (ROSIS)

TOTAL Incident Reports in this study = 276

What Were The Basic Causes? (ROSIS)

Standards/Procedures/Practices (~54%) Planning (~16%) Communication (~13%) Knowledge/Skill (~13%) Materials/Tools/Equipment (~9%) Judgment (~7%) Design (<1%) Capabilities (0) Natural Factors (0) Basic Cause not determined, 97 / 276 = ~35%

**Percentages based on the reports where a Basic Cause was evident (Total 179)

Basic Cause Comparison

Incident Learning System	ROSIS
Standards/Procedures/	Standards/Procedures/
Practices (~67%)	Practices (~54%)
Communication (~17%)	Planning (~16%)
Judgment (~11%)	Communication (~13%)
Materials/Tools/Equipment (~9%)	Knowledge/Skill (~13%)
Knowledge/Skill (~7%)	Materials/Tools/Equipment (~9%)
Planning (~4%)	Judgment (~7%)
Design (~3%)	Design (<1%)
Capabilities (~2%)	Capabilities (0)

An Observation

Both local experience and global experience suggest that more than half of all incidents are related to Standards/Practices and Procedures

Presentation Outline

- 1. An Application of an Incident Learning System
- 2. Local Learning An Analysis of Basic Causes
- 3. Global Learning the AAPM Working Group on the Prevention of Errors and ROSIS
- 4. Local and Global Learning are the lessons different?
- 5. Conclusions

Conclusions

• A formal structured Incident Learning System can make radiation therapy safer

• Local experience suggests that most incidents result from procedures not being followed

• ROSIS data also suggest procedure related issues result in the greatest number of incidents

•Full effective implementation of an Incident Learning System requires significant resources