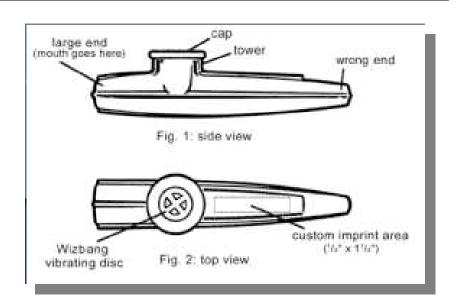
Developing Medical Physics Technical Standards Through the AAPM and ANSI

Geoffrey S. Ibbott, Ph.D.

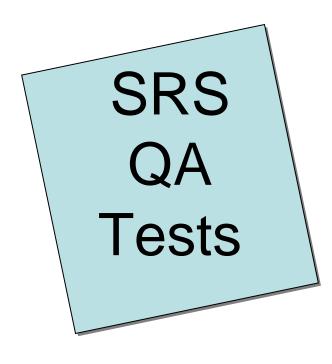


The Problem

- AAPM publishes Task Group reports
 - TG-51, TG-43, TG-40, etc.
- Not standards
 - Not intended to be used for accreditation or regulation
 - Several have been adopted in part into regulation
 - Happens without our control or approval
 - Has caused problems for physicists

The Problem [2]

- ACR and other publish professional standards
 - Often don't address technical issues
 - Not binding
 - Practice guidelines (e.g., for digital radiography) make recommendations, not requirements



TG Reports \Rightarrow Standards?

- Part of TG-40
 - Minimum acceptable QA
- TG-51
 - External beam calibrations
- TG-45/IEC 60976
 - Linear accelerator acceptance testing/QA
- Report 74 from DI TG-12
 - QC procedures for R&F imaging equipment

Example of Canadian Standards

- Stereotactic Radiosurgery
- LDR Prostate Brachytherapy
- CT Simulation
- Brachytherapy
- Major Dosimetry Equipment

Designator	Test	Performance			
		Tolerance	Action		
Patient Specific*					
PSL1**	Patient monitoring system	Functional			
PSL2**	Machine interlocks (as appropriate)	Functional			
PSL3	Collision tests	Functional	Functional		
PSL4	Imaging parameter check	Appropriate	Appropriate		
PSL5	MU calculation (independent check)	3%			
PSL6**	Couch/Pedestal Locking	Functional			
PSL7**	Cone alignment (if appropriate)	0.5 mm	0.75 mm		
PSL8	Field shape check (if appropriate)	0.5 mm	0.75 mm		
PSL9	Target coordinate check	0.75 mm	1 mm		
PSL10**	Laser check	0.75 mm	1 mm		
PSL11	Head Frame motion	1 mm	1 mm		
PSL12	Checklist use	Documented			
Quarterly					
QSL1	Isocentre wobble diameter (gantry)	0.5 mm	0.75 mm		
QSL2	Isocentre wobble diameter (couch)	0.5 mm	0.75 mm		
QSL3	Couch and gantry axis coincidence	0.5 mm	0.75 mm		
QSL4	Collimator wobble diameter	0.5 mm 0.75 mm			
QSL5	Records	Complete			
Annually					
ASL1	Acceptance functional tests	Functional			
ASL2	Percentage depth dose	2%	2%		
ASL3	CT localization performance	1.5 mm	1.5 mm		
ASL4	MRI localization performance	2 mm	2 mm		
ASL5	Angiography localization performance	1 mm	1 mm		
ASL6	Dose profiles (FWHM)	1 mm	1 mm		
ASL7	Dose delivery test	2%	5%		
ASL8	Output factors	2%	3%		
ASL9	Radiation/mechanical isocentre coincidence	0.5 mm	0.5 mm		
ASL10	Known target test (CT-based)	1 mm	1.5 mm		

CAPCA Quality Control Standards: Stereotactic Radiosurgery/Radiotherapy, Nov 2005

Dosimetry Equipment QA

(a) Reference	Dosimetry: Secondary Standard				
Designator	Test	Perfori	Performance		
		Tolerance	Action		
Initial use and following calibration					
ISS1	Extra-cameral signal (stem effect)	0.5%	1.0%		
ISS2	Ion collection efficiency	Characterize	Characterize		
ISS3	Linearity	0.5%	1.0%		
ISS4	Leakage	0.1%	0.2%		
ISS5	Collection Potential Reproducibility	1.0%	2.0%		
At each use					
ESS1	Reproducibility	0.2%	0.5%		
Bi-annual (i.e., every two years)					
BSS1					

CAPCA Quality Control Standards: Major Dosimetry Equipment, Sept 2004

HDR Brachytherapy

- The US does not have a national dosimetry standard for HDR ¹⁹²Ir
 - Standard developed at UW adopted by ADCLs
- UW procedure could be formalized through an ANSI standard, would then be recognized internationally
 - Would facilitate comparisons, perhaps simplify approval process for new devices

Brachytherapy Seeds

- TG-43
 - Manufacturers could be held to an ANSI standard
 - Would provide data in compliance with TG-43 when applying for FDA approval

100 YEARS OF THE IEC

ABOUT THE IEC

IEC IN ACTION CONFORMITY ASSESSMENT

STANDARDS DEVELOPMENT FOR MEMBERS AND EXPERTS **WEB STORE** SEARCH

Version française

WHAT'SRELATED

Special IEC community rate for

- IEC technical committee creation: the first half-century
- Development and growth of IEC technical committees: 1950 to 2006
- 1906 Preliminary Meeting Report
- ▶ IEC History: 1906-1956
- IEC Bulletin 75th anniversary edition
- IEC SI Zone
- 1901-2001, Celebrating the Centenary of SI - Giovanni Giorgi's Contribution and the Role of IEC

In the beginning...

Techline

IEC Centenary Challenge

Events

Presidents

General secretaries

Cool stuff

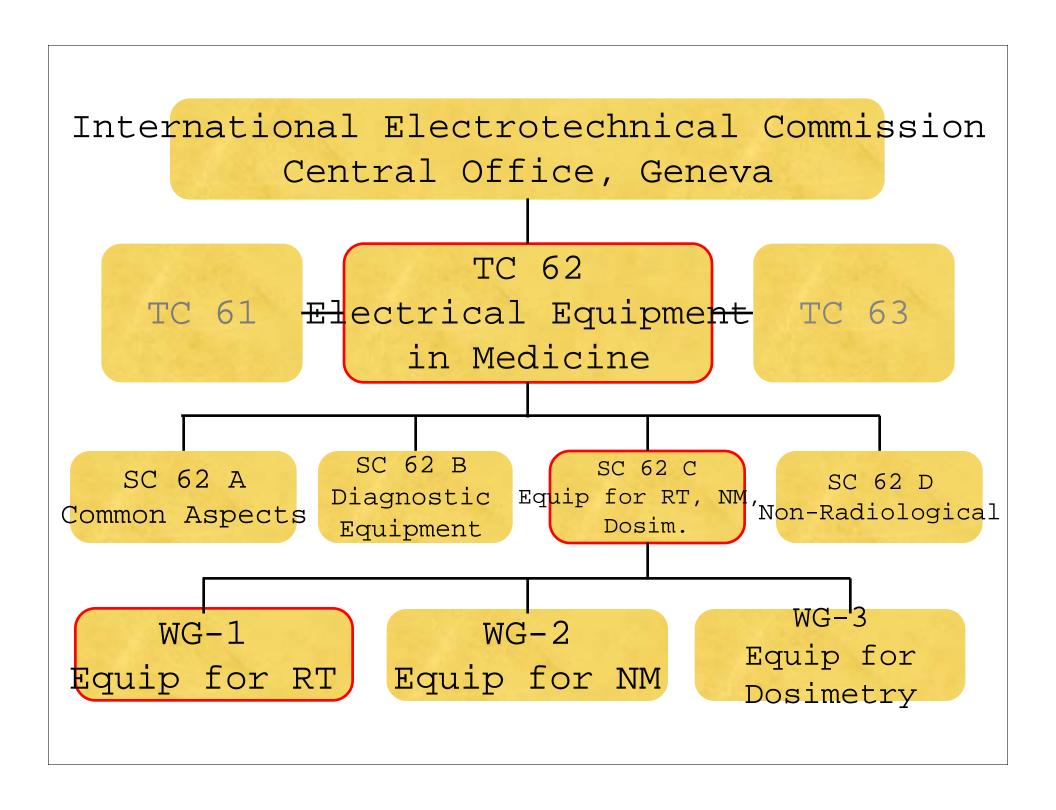
The IEC came into being on 26-27 June 1906 in London, UK, and ever since has been giving the very best global standards to the world's electrotechnical industries. The IEC thanks industry, government, academia, end-users, and everyone else who has been involved from around the world for 100 years of commitment and partnership.

0

Role of the IEC and Impact of its Standards

- IEC's international standards facilitate world trade by removing technical barriers to trade, leading to new markets and economic growth.
- They also represent the core of the World Trade Organization's Agreement on Technical Barriers to Trade (TBT), whose 100-plus central government members explicitly recognize that international standards play a critical role in improving industrial efficiency and developing world trade.
- Using IEC standards for certification at the national level ensures that a certified product has been manufactured and type-tested to well established international standards. The end user can be sure that the product meets minimum (usually high) quality standards, and need not be concerned with further testing or evaluation of the product.

Adoption of IEC Standards


🥙 In Europe:

- IEC standards selected for "parallel voting" by CENELEC
- When approved, assigned "EN" number
- Standards adopted as written and carry the force of law
- EC members must enforce

Adoption of IEC Standards

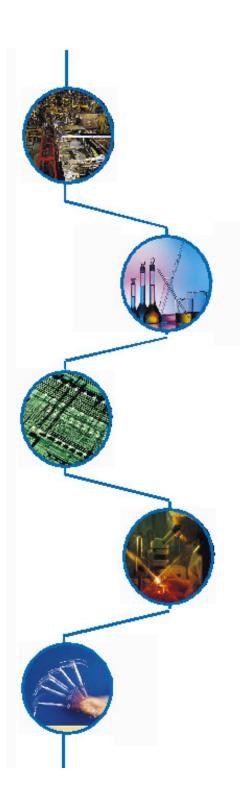
9 In US:

- IEC standards (or sections) incorporated into ANSI standards, FDA regulations, NEMA guidelines, etc.
- IEC standards can be used as written; FDA requires vendor to report compliance

Role of Working Group

Electrotechnology. A natural passion.

- Develop Standards
 - Safety Standardssafety and "essential performance"
 - *Technical Reports
 - Performance Standards
 - Performance Guidelines


International Electrotechnical Commission

Publications from WG-1

- Equipment for Radiation
 Therapy
 - Linear Accelerators
 - Cobalt Units (including
 Gammaknife)
 - Orthovoltage Treatment
 Units
 - Simulators
 - Brachytherapy Remote
 Afterloaders
 - Treatment Planning Systems

Electrotechnology. A natural passion.

American National Standards Process Summary

Source: psa@ansi.org

May 14, 2007

MISSION

To enhance the global competitiveness of U.S. business and the American quality of life by promoting and facilitating voluntary consensus standards and conformity assessment systems and ensuring their integrity.

ANSI IS...

- Only accreditor of U.S. Standards Developers
- Only body that approves standards as American National Standards (ANS)
- Represents the US Internationally at ISO (International Organization for Standardization)
- Represents the US Internationally through its US National Committee at the IEC (International Electrotechnical Commission)

ANSI

AAPM has members on TAGs to USNC

ANS GOVERNANCE BODIES

- Executive Standards Council (ExSC)
 - Accredits American National Standards Developers
 - Accredits US Technical Advisory Groups (TAGs) to ISO
 - Oversees Accredited Standards Developer Audit Program
 - Maintains most ANSI procedures and policies
 - > Hears appeals and considers complaints
- Board of Standards Review (BSR)
 - > Approves American National Standards
 - > Hears appeals and considers withdrawal requests
- ANSI Appeals Board (AB)

STANDARDS DEVELOPER ACCREDITATION

- Only ANSI-Accredited Standards Developers may submit their standards through the American National Standard approval process
- ANSI-accreditation signifies that the standards developer is committed to an open, fair and time-tested consensus process that benefits stakeholders and the American public
- ANSI-Accredited Standards Developers are accredited to the requirements contained in the ANSI Essential Requirements: Due process requirements for American National Standards

BENEFITS OF ACCREDITATION AND ANS APPROVAL

- Hallmarks of the ANS Process
 - > Openness, due process, consensus by a balance of materially-affected interests, consideration of views and objections
 - > Transparency of the process
 - > Fundamental fairness Ensures level playing field
- Minimizes some legal risks by requiring procedural safeguards (re: antitrust, product liability/negligence, etc.)
- Government acceptability (e.g. National Technology Transfer & Advancement Act of 1995)
- Accreditation is a prerequisite for the National Adoption of an ISO or IEC standard as an ANS

ANSI ACCREDITATION REQUIREMENTS

- A standards developer's written procedures for the development and approval of proposed American National Standards must meet ANSI due process and consensus requirements
 - 1. Openness
 - 2. Balance and Lack of Dominance
 - Discrete interest category definitions
 - 3. Public comment opportunity
 - 4. Consideration of Views and Objections

ORGANIZATIONAL MEMBER

Organizational Member

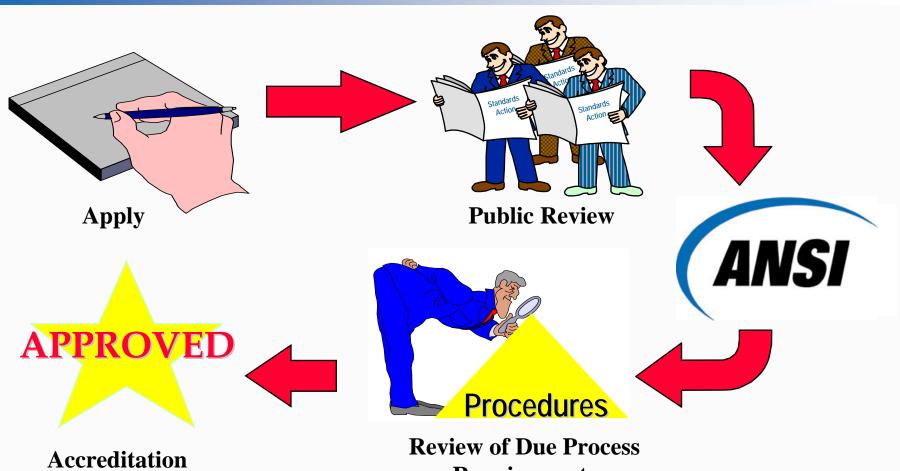
A not-for-profit scientific, technical, professional, labor, consumer, trade or other association or organization that is involved in standards, certification or related activities.

- Click here to access an Organizational Member application.
- Join Online as a Basic Member

[organizational membership application]

american national standards institute

[contact informa	ation]	[fee schedule]
organization name name of president or CEO		ANSI membership is based upon a calendar-year billing cycle. An interested party may join ANSI at any time and pay a prorated fee that is calculated on a quarterly basis. Future billing cycles will begin on January 1 of each subsequent year.
corporate website address		
brief description of organi	zation	annual membership fee in \$ (see schedule on reverse)
		[payment information]
primary representative	name	a check, made out to ANSI, is enclosed
title		please charge fee to the credit card indicated below
street address		Visa (13 or 16 digits) MasterCard (16 digits)
city	state/province	American Express (16 digits)
postal code	country	
phone	fax	charge card number
e-mail (required)		month year cardholder's five-digit zip code
secondary representativ	ve name	evoiration date (hilling statement address) USA only



ACCREDITATION FEES

- \$3,000 Initial Application Fee
- Annual National Assessment Fee sliding scale in 2007 from \$1,655 for 0-3 ANS
- Includes cost of periodic procedural audit
 - > (5 year cycle)

ACCREDITATION PROCESS

Requirements

MAINTENANCE OF ACCREDITATION

- Procedural audit typically once every 5 years
- Submission of periodic compliance forms when ANSI's procedural requirements change
- Submission of procedural revisions for approval (reaccreditation process: similar to steps in the accreditation process)
- Payment of ANSI Membership/Maintenance of Accreditation Dues

ACCREDITED STANDARDS DEVELOPERS

- Currently there are about 200 ASDs
- Developing standards in virtually all industry sectors
 - A few examples: medical devices, telecommunications, records management, fire protection, welding, earth-moving machinery, information technology and interoperability, air-conditioning and refrigeration, electrical safety, sunglasses, bicycle helmets, boilers and pressure vessels, metalworking skills assessment, welding skills certification, nuclear equipment operator certification, certification of hazardous waste incinerator operators, etc.

THE AMERICAN NATIONAL STANDARD DESIGNATION

SIGNIFIES THAT STANDARDS...

- Are developed using fair, open process that ensures a level playing field
- > Meet the needs of materially affected interests
- Are voluntary compliance is not required unless adopted by regulation or statute

ANS APPROVAL PROCESS

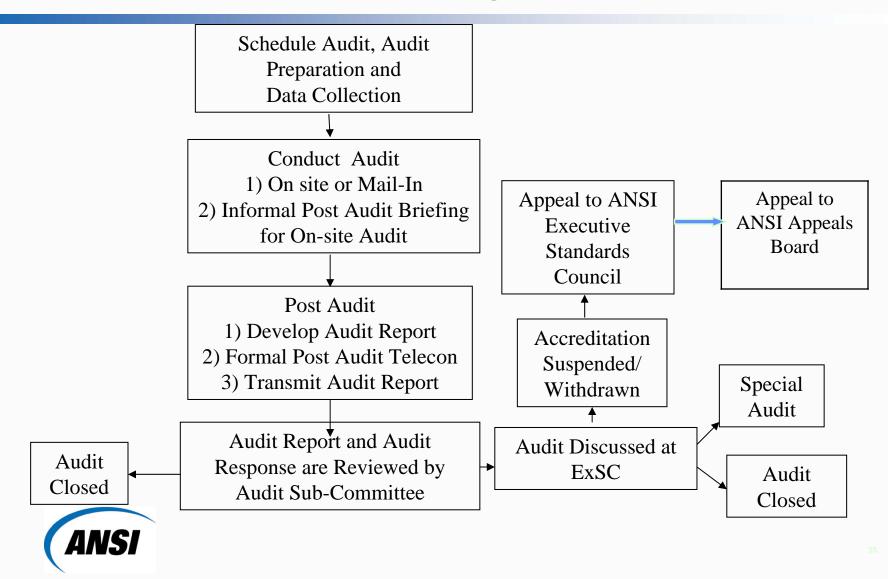
- Stage 1: PINS form to ANSI
 - Announcement of project initiation
 - PINS deliberation if claim of conflict or duplication is raised
- > Stage 2: Approval of draft
 - Consensus body approves text of draft standard
 - Must meet numerical requirements for consensus as described in developer's accredited procedures (e.g. approval by a majority of consensus body and 2/3 of those voting, etc.)
- > Stage 3: Public Review
 - BSR-8 form initiates announcement in *Standards Action*. Developer may also announce in industry publications, etc. (multiple public reviews are possible)

ANS APPROVAL PROCESS

- > Stage 4: Comment resolution
 - Public and consensus body member comments
- Stage 5: Recirculation (if applicable)
 - Unresolved negative comments from consensus body members and public review commenters as well as any substantive changes to the text, must be recirculated to the entire consensus body to allow them to vote, reaffirm a vote or change a vote
- > Stage 6: Appeals at developer level

ANS APPROVAL PROCESS

- Stage 7: Submittal to ANSI for approval
 - Submittal of final standard for approval with evidence of consensus (BSR-9 form)
- Stage 8: Notification
 - Notification of final approval/disapproval
- > Stage 9: Appeal at ANSI
 - Hearing is scheduled if appeal is filed



APPEALS

- Informal resolutions encouraged
- Appeals to a developer: in accordance with accredited procedures
- Appeals to ANSI:
 - ➤ Board of Standards Review (BSR) ANS
 - ➤ Executive Standards Council (ExSC) accreditation and procedural compliance issues
 - Appeals Board final level after the BSR or ExSC appeal concludes

Audit Process – Summary Flow

ANSI'S STANDARDS ACTION

- www.ansi.org/standardsaction
- Available freely to the public
- Published every week
- Includes national and international activity
- Announces: PINS (project initiation notices); public review periods for American National Standards: accreditations and standards; and final approval decisions.
- Announces meetings, all actions re: ANS; any proposed revisions to ANSI procedural requirements, etc.

CONTACTS: PROCEDURES & STANDARDS ADMINISTRATION

Ms. Anne Caldas, Director, ANSI/PSA

Telephone: 212-642-4914

E-mail: <u>acaldas@ansi.org</u>

 Mr. Jim Thompson, Manager, Standards Developer & U.S. ISO/TAG Accreditation Programs

Telephone: 212-642-4963

E-mail: jthompso@ansi.org

Mr. Jay Moskowitz, Director, ANSI Audit Program

Telephone: 212-642-8925

E-mail: <u>jmoskowi@ansi.org</u>

INFORMATION SOURCES

- www.ansi.org
 - Public Library
 - > Standards Action
 - Electronic Standards Store (ESS)
- www.NSSN.org
- E-mail: psa@ansi.org

STANDARDS DEVELOPED BY HPS

	Number	Title	Date	Bytes	Pages	
N13	N13 Standards					
办	N13.6-1999	Practice for Occupational Radiation Exposure Records Systems	5/6/99	119,594	28	
内	N13.11-2001	Personnel Dosimetry Performance – Criteria for Testing	7/31/01	380,060	45	
内	N13.12-1999	Surface and Volume Radioactivity Standards for Clearance	8/31/99	269,891	65	
内	N13.30-1996	Performance Criteria for Radiobioassay	May 96	498,255	109	
办	N13.35-1999	Specifications for the Bottle Manikin Absorption Phantom	9/21/99	210,282	22	
内	N13.36-2001	Ionizing Radiation Safety Training for Workers	10/30/01	190,680	24	
内	N13.39-2001	Design of Internal Dosimety Programs	5/24/01	679,430	74	
A	N13.41-1996	Criteria for Performing Multiple Dosimetry	Dec 96	179,583	21	
办	N13.49-2001	Performance and Documentation of Radiological Surveys	8/6/01	471,998	36	
内	N13.52-1999	Personnel Neutron Dosimeters (Neutron Energies Less Than 20 MeV)	10/26/99	69,420	24	

STANDARDS DEVELOPED BY HPS [2]

N43 Standards					
内	N43.2-2001	Radiation Safety for X-ray Diffraction and Fluorescence Analysis Equipment	7/31/01	295,761	25
内	N43.4-2005	Classification of Radioactive Self- Luminous Light Sources	Sep 05	71,799	17
杏	N43.5-2005	Radiological Safety Standard for the Design of Radiographic and Radioscopic Non-Medical X-Ray Equipment Below 1 MeV	Sep 05	69,000	20
内	N43.8-2001	Classification of Industrial Ionizing Radiation Gauging Devices	Mar 01	342,664	32
杏	N43.10-2001	Safe Design and Use of Panoramic, Wet Source Storage Gamma Irradiators (Category IV) and Dry Source Storage Gamma Irradiators (Category II)	Jan 01	324,848	38
亼	N43.15-2001	Safe Design and Use of Self-Contained Wet Source Storage Gamma Irradiators (Category III)	Mar 01	293,812	32
本	N43.17-2002	Radiation Safety For Personnel Security Screening Systems Using X-rays	4/3/02	523,664	30

ANSI N44 COMMITTEE

- Houses radiological equipment standards
- Committee has been inactive for many years
- AAPM could become secretariat
- N44 committee is logical home for medical physicsrelated standards

BENEFITS OF BEING AN ANSI STANDARDS DEVELOPER


- Produce standards that can be adopted by regulators
- Helps to standardize review and approval process
- Standards will have national & international recognition
- Mechanism to adopt international standards
- Facilitates participation in US National Committee of the IEC and US TAGs

BENEFITS TO AAPM MEMBERS

- Clarify consensus on minimum criteria
- Enable regulators to adopt uniform requirements
- Insurance companies could adopt uniform requirements
- Patients and public would have assurance of uniform minimum standards

Thank you for your attention