

Verification of dose point kernels for ¹⁹²Ir brachytherapy

Jose' A. Bencomo¹, Daniel J. Macey², and Ann Lawyer³

^{1,3}Department of Physics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd. Houston Texas 77030

²Radiation Oncology New Orleans Cancer Institute, 2829 Napoleon Ave., New Orleans, LA 70115

Abstract

Evaluate the use of film in a spiral phantom to verify the dose point kernels and maps required for brachytherapy treatment planning with 192Ir. Methods and Material

Methods and Materiak: EDR2 film (Extended Dose Rate, Eastman Kodak Co. Rochester, NY) and GatChromic EBT film from International Specialty Products, Inc (Wayne, NJ) were cut to fit the spiral groove of a 18-cm diameter solid water phantom designed for IMRT QA (The Gammex RMI 469 IMRT (Gammex RMI, Middleno, WJ) and exposed to acquire a dose versus distance map. The radioactive source pellet of about 7.6 ¹³/₁₇ was located at the center of the spiral phantom with the central axis normal to the film. The exposure time was calculated to deliver 7 Gy to the proximal and of the film located 1 em from the source. The dose point krennel was measured with a 0.6 cc Farmer chamber placed at various distances from the radioactive pellet in a 30 em stack of Solid Water¹⁴⁴ slabs. The recorded Image on each film was scanned with a Vidar 16 bit scanner and analyzed with the Radiological Imaging Technology Software (RIT V41, Radiological Imaging Technology, Colorado Spring, CO). The doses measured at 1 to 7 cm depth in Solid Water¹⁴⁴ were assigned to distances along the spiral image. These data provided a calibration of optical density values measured from the spiral image. Corrections for soliquity was neglected, and the films assumed to be exposed to a broad beam. Thus any champer neglical density with energy was obviated. The tot nose agreement.

This study confirmed that the images recorded on EDR2 and EBT films from an ¹⁹²Ir pellet source exposed in a spiral phantom can be used to verify the dose point Kernels and isodose maps required for treatment planning. The method can be extended to other radionuclides such as ¹²³I and ¹⁰⁴PD used for LDR brachytherapy.

Introduction

Measured dose point kernels in the range of 1mm to 10 cm are important for characterizing the 3-D radial functions required in treatment planning with radionuclides currently employed in HDR and LDR. For prostate, breast and mammocyte HDR, the dwell positions are usually separated by 2.5 to 5 cm. The aim of this study is to test the feasibility of using the image recorded with the extended dose range film EDR2 and the EBT films in a a 18-cm diameter Soild Water³⁴ spiral planning discussion (MRT quality assurace (OA) to determine the dose point kernel and dose distribution for the ¹⁵²I source pellet used in the Nucletron Microselectron HDR system for planning and treatment.

Methods and Materials:

The spiral IMRT QA phantom was modified by drilling a 1.2 mm diameter hole at the center to hold a catheter for the ¹⁵²Ir pellet from the Microselectron treatment system. A 3 by 12 inch strip of EDR2 or EBT film was loaded in the spiral groove with one end abutting the proximal end of the groove at 1 cm from the center of the phantom. The time required to deliver 700 cGy to 1 cm from a 7 Ci ¹⁵²I source was calculated using the Nucleton Plato treatment phantom. The time required to deliver 700 cGy to 1 cm from a 7 Ci ¹⁵²I source was calculated using the Nucleton Plato treatment phantom is at 3 on 15 cm to expose EDR2 and EBT films were scanned with a Vidat 16 bit scanner and the resultant images analyzed with the RIT software. The dose point Remel for ¹⁵²Ir was measured using a 0.6 cc Framer chambers in a 30 cm diameter block of solid water. The RCT endings at 3 to 15 cm from the ¹⁵¹Ir source were converted to cGy using the TC2-11 formalism (Goetsch et al. 1991). The GY from 1 to 30 cm along the spiral corresponding to 1 to 7 cm radial distance were calculated from the ion chamber readings and used to calibrate the optical densities of the films. The measured dose at various distances was used at an input data for the RTI image analysis software along the central axis of the source. The RTI software was then used to provide the dose at all other points of the recorded images.

The resultant dose distributions were compared with published data calculated from the treatment planning system. Good agreement was found with the dose point kernel measured with thanher and TG-43 report data, and the resultant isodose distributions compared with data proceed with dose points measured with multiple miniature TLD sampling (A. S. Kirov et al 1995).

f the phantom was acquired to verify its geometry. Figure 2 shows the spiral groove and small cavities for or TLD capsules. The film is loaded in the spiral groove and exposed with a light tight cover for a dwell time. Figure 2. Shows the process of converting the linear distance along the spiral to the radial distance from the source in the central

Radial Distance (cm) = 0.0213d⁶ - 0.529d⁵ + 5.0413d⁴ - 23.064d³ + 52.943d² - 53.102d+ 18.882 R2 = 0.9985 Where d is the linear distance along the film

Figure 3 illustrates the steps followed to calibrate each film. Each film was irradiated with the Iridium source using different s of Solid WaterTM. The dose was also calculated with the Plato brachytherapy softwar

Figure 6 shows the angles ϕ and θ formed by the radial distance from the center of the source to the reference line (line 157) on EDR2 film and the superior and inferior edges of the film, the angles ϕ_i and θ_j at the shortest radial distance to the film and ϕ_j and θ_j at the farthest radial distance to the source.

Figure 6 Diagram showing the angles **\$** and **6**

Figure 7 shows the pixel size calculated from the number of pixels and the dimensions of the scanned film.

Figure 7 Diagram showing the calculation of pixel size

Figure 8 shows the process of conversion of optical density or pixel value to dose. In this study all conversion and calculation rmed using the MathCad mathematical software version 12.1

Figure 10. A profile along the longest dimension of the EDR2 film

Figure 11. Radial function and dose along the EDR2 film in the spiral phanton

Figure 12a and 12b. Show the attenuation factor of the ¹⁹²Ir spectrum through different thickness of Solid Water.TM and the corresponding ion chamber reading vs. the inverse of the square of the thickness of Solid Water.TM

Figure 13a. Shows the measured radial function normalized at 3 cm. figure 13b shown the location of the virtual source

Figure 14 shows a 3D rendering of the radial function generated using MathCad version 12. All the data from 1 cm to the source are set to zero

Figure 15a. Shows the calibration of the EBT GafChromic film with the ¹⁹²Ir source and a 6 MV photon beam from a Varian linear accelerator. There is not an energy dependence. Fig 15b. Shows three pieces of EBT film irradiated to 7, 14, and 28 Gy tively

Figure 16a. Comparison of optical density vs. dose (cGy) to Figure 16b. EBT GafChromic Film irradiated inside spiral phantom. a. 7 Gy b. 14 Gy c. 28Gy

Conclusions

Excellent agreement was found between the dose point kernel measured with a Farmer chamber and published values for ¹⁹²Ir. The RIT software could be calibrated simply along the central axis of a source pellet and used to convert the optical density at adjacent locations/distances from the source. The attenuation data observed for ¹⁹²Ir from ion chamber measurements separated the attenuation of low energy from the photons emitted from 300 to 400 KeV.

This simple approach was used to verify the dose point kernel currently used for ¹⁹²Ir. The method could be extended to verify the dose point kernels for other radionuclides such as ¹²³I and ¹¹⁰Pd for LDR brachytherapy and ¹¹⁰Yb proposed as an alternative for HDR. Special software should further developed to translate the dose map from the spiral to a 3-D volume dose distribution. A larger spiral phantom can be designed to verify the dose point distribution above and below the source pellet. The spiral groove should be extended to verify the dose maps from 1 to 10 mm. This method can also be used to test the resultant doses from 2 or more individual dwell times and/or separated by typical step sizes of 2.5, 5 and 10 mm.

Acknowledgement

This work was supported by PHS grant CA 10953 awarded by the NCI, DHHS. The authors wish to thank Mr. Keith Daniel and Pat Barnett for modifying the IMRT phantom used in this work, and special thanks to Mr. Greg Suiedem, RTT for scanning the IMRT phantom, and to Dr. Peter Balter for transferring the phantom imagers from the AcQSim CT scanner to my PC for analysis. Finally, we want to recognize Mr. Greg Martin QA Dosimetrist, and Ms. Nadia Hernandez for help with the Vidar 16 laser scanner and the CCD100 Microdensitometer respectively.

References

S. J. Goetsch, F. H. Attix, D. W. Pearson, and B. R. Thomadsen, "Calibration of ¹⁹²Ir high-dose-rate afterloading systems," Med. Phys. 18 (3), pp. 462-467, 1991.

K. E. Stump, L.A. DeWerd, J. A. Micka, and D. R. Anderson, "Calibration of a new dose rate 1921r Sources," Med. Phys. 29 (7), pp. 1483-1488, 2002.

A. S. Kirov, J.F. Williamson, A. S. Meigooni, and Y. Zhu, "TLD, diode, and Monte Carlo dosimetry of an 1921r source for high dose-rate brachytherapy," Phys. Med. biol. (40) pp. 2015-2036, 1995.

R. Nath, A. S. Meigooni, P. Muench, and A. Melillo, "Anisotropy functions for ¹⁰³Pd, ¹²⁵I, ¹⁹²Ir interstitial brachytherapy," Med. Phys. 20 (5) pp.1465-1473, 1993.

A. S. Kirov, A. S. Meigooni, Y. Zhu, R. K. Valicenti, and J.F. Williamson, "Quantitative verification of 1921r PDR and HDR source structure by pin-hole autoradiography," Med. Phys. 22 (11), pp. 1753-1987, 1995.

A. S. Meigooni, Z. Li, V. Mishra, and J. F. Williamson, "A comparative study of dosimetric properties of Plastic Water and Solid Water in brachytherapy application,"Med. Phys. 21 (12), pp. 1983-1987, 1994.

R. Nath, L. L. Anderson, G. Luxton, K. A. Weaver, J. F. Williamson, and A. S. Meigooni, "Dosimetry of interstitial brachytherapy sources: Recommendations of the AAPM Radiation Therapy Committee Task Group No. 43," ed. Phys. 22 (2), pp. 209-234, 1995. Radiation Therapy Dosimetry Software (RIT) v4.01, Radiological Imaging Technology, Colorado Spring Co.