

Verification and Benchmark of a Source Model for a 🐺 Washington Varian 6 MV Photon Beam Using Monte Carlo **Calculations**

S Davidson¹, J Cui², S Kry¹, M Vicic¹, J Deasy², A. White¹, G Ibbott¹, D Followill¹ ¹UT MD Anderson Cancer Center, Houston, TX; ²Washington University, St. Louis, MO

Introduction

We are developing a flexible measurement-driven machine model for Varian, Elekta, and Siemens linear accelerators for energies of 6 MV and 10 MV.¹ The model is used in the Monte Carlo Dose Planning Method² (DPM) dose calculation algorithm. The multi-source model consists of a primary photon point source, an extra-focal exponential disk source,³ and an electron contamination uniform disk source.⁴ The model accounts for fluence and off-axis energy⁵ effects due to the flattening filter. This work details the validation and benchmarking of the Varian 6 MV photon beam.

Material & Methods

Dose calculations for field sizes from 4 cm by 4 cm to 40 cm by 40 cm were performed for the Varian 6 MV photon beam. The beam profile measurements were made using an ion chamber. The calculated profiles were convolved with a Gaussian function to account for the artificial broadening of the penumbra due to the ion chamber volume effects.6 Comparisons between measurement and calculation of beam profiles at several depths and the percent depth dose (PDD) were made. The criteria for acceptance was 2%/2 mm with at least 90% of the data passing.

In addition, a nine beam IMRT homogeneous head and neck (H&N) plan, a nine beam stereotactic lung plan, and a five beam IMRT lung plan were delivered to the Radiological Physics Center's anthropomorphic phantoms that housed TLD and radiochromic film dosimeters for benchmark evaluations (Figure 1). Each delivery was repeated three times. The TLD were positioned next to the film within the phantom. In this way, the film was normalized to the TLD dose value. The films were positioned in the center of the target and extended to low dose regions. The films were oriented in the axial and sagittal planes for the head and neck phantom. Film for the coronal plane was also used for the thorax phantom. The films were read using a CCD camera/light source densitometer. A dose calibration curve was made to convert optical density to dose. Comparisons between measurement and calculation included profiles and gamma maps. The criteria for acceptance was 3%/2 mm with at least 85% of the data passing.

Results

Basic beam field sizes from 4 cm by 4 cm to 40 cm by 40 cm for the Varian 6 MV photon beam met the test criteria (2%/2 mm, >90%) (Figures 2 - 7). Benchmark testing of IMRT and SBRT treatment plans for the Varian 6 MV photon beam met the test criteria (3%/2 mm, >85%) (Figures 8 - 24).

Specifically, for basic square beam fields of 4 cm through 40cm (4 cm, 5 cm, 6 cm, 8 cm, 10 cm, 15 cm, 20 cm, 25 cm, and 40 cm) the source model using DPM Monte Carlo calculations agreed with measurement to within 2%/2 mm for at least 90% of the data tested (>96%).

Disagreement at the 2%/2 mm criteria level only occurred for the larger field sizes (20 cm by 20 cm to 40 cm by 40 cm). [continued]

Results

[continued] The horn-effect model tends to overestimate the dose as the off-axis angle increases. While along the central axis, some overestimation in dose occurred between the depths of about 2 cm to 5 cm. In all cases, this disagreement was either within 3% or 3 mm.

University in St.Louis

SCHOOL OF MEDICINE

For the benchmark results, the agreement at the tested criteria level of 3%/2 mm between calculation and measurement for the IMRT H&N plan was 91%, for the SBRT lung plan was 92%, and for the IMRT lung plan was 87%.

Disagreement at 3%/2 mm criteria level tended to occur in the penumbra regions. In the low-density lung regions of the thoracic phantom the calculation overpredicted the measured dose, while for the homogeneous H&N phantom the calculation underpredicted in the sharp transition from the primary target the adjacent critical structure of this highly modulated plan.

Conclusion

A measurement driven source model applying the DPM Monte Carlo dose calculation has been developed, validated, and benchmarked for use in verifying dose distributions in phantom or patient treatment plans in a non-clinical environment for the Varian 6MV photon

Extending the model to include the Varian 10 MV photon beam is underway. Model development is planned for the Elekta and Siemens 6 MV and 10 MV photon beams.

References

- S Davidson, J Cui, G Ibbott, D Followill, and J Deasy, "A flexible Monte Carlo tool for patient or phantom specific calculations: comparison with preliminary validation measurements," Journal of Physics: Conference Series (2008).
- Semnau 1 Wilderman S 1 and Bielajew A F "DPM a fast accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations." Phys Med Biol 45 (8), 2263-2291 (2000).
- Liu, H.H., Mackie, T.R., and McCullough, E.C., "A dual source photon beam model used in convolution/superposition dose Physics 24 (12), 1960-1974 (1997).
- Fippel, M., Haryanto, F., Dohm, O., Nusslin, F., and Kriesen, S., "A virtual photon energy fluence model for Monte Carlo dose calculation," Medical Physics 30 (3), 301-311 (2003).
- Tailor, R.C., Tello, V.M., Schroy, C.B., Vossler, M., and Hanson, W.F., "A generic off-axis energy correction for linad photon beam dosimetry," Medical Physics 25 (5), 662-667 (1998).
- MR Arnfield, K Otto, VR Aroumougame, and RD Alkins, "The use of film dosimetry of the penumbra region to improve the accuracy of intensity modulated radiotherapy," Med Phys 32 (1), 12-18 (2005)

Work supported by PHS CA010953, CA081647, and R01 CA85181 awarded by NCI, DHHS