

MDAnderson
Cancer Center

Making Cancer History®

An evaluation of three commercial metal artifact reduction methods for CT simulations in radiation therapy treatment planning

J Huang, J Kerns, J Nute, X Liu, F Stingo, D Followill, D Mirkovic, R Howell, S Kry

The University of Texas MD Anderson Cancer Center, Houston, TX

Introduction

- 1-4% of RT patients have metal implants that could affect their treatment (TG-63)
- Streak artifacts pose challenges for treatment planning
 - Difficult to contour the target and surrounding organs
 - CT number errors → density errors → dose calculation errors

Purpose

To evaluate metal artifact reduction (MAR) methods using criteria relevant for treatment planning and dose calculation accuracy:

- 1. Accuracy of CT numbers
- 2. Reduction in the severity of streak artifacts
- 3. Accuracy in the representation of the size of metal objects

Metal artifact reduction (MAR) methods

- Philips algorithm for orthopedic implants (O-MAR)
- 2. GE monochromatic Gemstone Spectral Imaging (GSI)
 - Dual energy CT (Discovery™ CT750 HD)
 - Reconstructed monochromatic images (40 to 140keV)
 - Focus on 140keV for this study
- GE monochromatic Gemstone Spectral Imaging with metal reduction software applied (GSI-MARs)

Anthropomorphic phantoms

IROC pelvic phantom with hip prosthesis

IROC thoracic phantom with titanium rods

CIRS head phantom with dental fillings

Streak artifact severity and CT number accuracy

Metal scan

Baseline scan

HU error map

100

Quantitative evaluation metrics:

- 1. % bad pixels (HU error > 40)
 - 40 HU error corresponds to approximately 1-2% dose calculation error for a 6MV photon treatment (Kilby et al. 2002)
- 2. M_{error} takes into account magnitude of errors

$$M_{error} = \frac{\% \ bad \ pixels}{100} * \overline{\Delta HU_{badpixels}}$$

- Example: 50% of pixels in image are "bad pixels" (HU error > 40) and the mean absolute error of these pixels is 80 HU $\rightarrow M_{error} = 40$
- Both metrics averaged over slices spanning the metal implant

Imaging technique	% bad pixels	M _{error}
Philips 120kVp	27.2	50.1
Philips O-MAR	25.0	41.0
GE 120kVp	22.4	41.7
GSI 140keV	20.4	38.0
GSI-MARs 140keV	24.7	35.5

GSI-MARs out-of-plane artifacts

GSI 140keV

200

150

GSI 140keV +MARs

Metal Size Accuracy

- HU threshold (1/2 max metal HU) used to identify metal pixels
- Metal area used to calculate diameter of metal rods

	Diameter error [mm]		
Imaging technique	Stainless Steel (28.6 mm)	Titanium (9.5 mm)	
Philips 120kVp	1.4	0.9	
Philips O-MAR	1.1	0.8	
GE 120kVp	1.2	0.9	
GSI 140keV	1.3	0.2	
GSI-MARs 140keV	-1.4	-2.6	

Summary of results

	Pelvic	Head	Thoracic	Weaknesses/Drawbacks
O-MAR	√ √	√	✓	 Induced artifacts for thoracic phantom
GSI 140keV monochromatic imaging	✓	✓	*	 No major drawbacks identified
GSI 140keV monochromatic imaging + MARs	*	X	✓	 Underestimation of metal size and possible distortion of metal shape Induced "out-of-plane" artifacts for dental fillings Induced artifacts for thoracic phantom

✓ = small reduction in streak artifacts
 ✓ = more substantial reduction streak artifacts
 ★ = highly successful / best MAR method for a particular site
 X = MAR not recommended for use at a particular site

Acknowledgements

- Stephen F. Kry, Ph.D.
- James R. Kerns
- Jessica L. Nute
- Xinming Liu, Ph.D.
- Peter A. Balter, Ph.D.
- Francesco C. Stingo, Ph.D.
- David S. Followill, Ph.D.
- Dragan Mirkovic, Ph.D.
- Rebecca M. Howell, P.D.
- IROC Houston (formerly RPC)