AAPM Task Group 51

(Med Phys 26, p.1847 - 70, 1999)

SWAAPM Fall Meeting 2000

William F. Hanson, Ph.D. Sang Cho, Ph.D.

Jessica Lowenstein, M.S. Peter Balter, M.S.

San Antonio TX.

October 6, 2000

ACKNOWLEDGEMENTS

- Beta test performed by:
 - -Sang Cho, Ph.D.
 - -Jessica Lowenstein, M.S.
 - -Peter Balter, M.S.
- ADCL staff:
 - Nathan Wells, M.S.
 - -Peter Balter, M.S.
- Courses, laboratories and presentations
 - lab instructors,
 - students,
 - attendees

ACKNOWLEDGEMENTS

This work was supported by PHS grant CA10953 awarded by the NCI, DHHS.

Traceability of Standards

- Dosimeters Traceable to National Standards
- National Protocol for calculation of Dose at a reference point (TG-21 & TG-51)
- National Protocol for Calculation of Dose to arbitrary point in a patient (relative to reference point dose) (EORTC)

Traceability to National Standards

Calibration of Ion Chamber by ADCL (NIST) Chamber Calibration Factor

N_X: EXPOSURE CALIBRATION FACTOR: (Roentgen/ Charge) Exposure at the chamber-center with the chamber removed.

N_K: AIR KERMA CALIBRATION FACTOR: (Gray/Charge) Air Kerma at the chamber-center with the chamber removed (never used seriously except maybe in a few European Centers.)

 N_{gas} : CAVITY GAS CALIBRATION FACTOR: (Gray/Charge) Absorbed dose to the gas in the chamber at chamber-center [N_{gas} related to N_K (N_X) through calculational algorithm.]

N_{D,w}: ABSORBED DOSE (water) CALIBRATION FACTOR: (Gy/Charge) Absorbed dose to water at chamber-center, with chamber removed and replaced by water.

AAPM TG-51 Protocol for Clinical Reference Dosimetry of High-Energy Photon and Electron Beams

- Based on an Absorbed dose to water (in Water)
 Standard (at reference energy ⁶⁰Co):
 - More robust standard than AIR-KERMA
 - Close to quantity needed (absorbed dose in tissue)

AAPM TG-51

- Conversion to absorbed dose other energies
 - Photon: Single factor; k_Q
 - Electron: 3 Factors; $P_{gr}^{Q}, k_{R50}', k_{ecal}$
- Chamber specific corrections in "classes" few k_o values
- Calibration in water (annually)
 Plastics reference to water calibration

AAPM TG-51

- Photon:
 - ➤ Beam Quality: %dd @ 10 cm (remove e⁻ contamination)
 - ➤ Reference depth: 10 cm
- Electron:
 - ➤ Beam Quality: R₅₀
 - >Reference depth: d_{ref} α R₅₀

TG-51

Based on Bragg Gray Cavity Theory

- Chamber specific Corrections
 - TG-21 formalism
 - hidden in k_Q and k'_{R50}.
- Determine k_O and k'_{R50} directly
 - for chamber make & model
 - at National laboratories

Absorbed Dose Calibration Factor

Ideal:
$$D = M \cdot N_{D,w}^Q$$

Where: $N_{D,w}^{Q}$ is the chamber Absorbed Dose Calibration Factor specific for the energy and modality of the beam being measured.

Absorbed Dose Calibration Factor

Ideal:
$$D = M \cdot N_{D,w}^Q$$

- Too expensive to be practical
- We understand the behavior of chambers in the megavoltage range.
- Cobalt 60 is still available, and very reproducible
- Cobalt 60 is a near perfect beam to use as the reference energy for chamber calibration.

Photon Equation

$$D_{w}^{Q} = M k_{Q} N_{D,w}^{60 co} [Gy] \qquad (Eq 3)$$

```
Dw = Dose to water at beam quality Q
```

M = Corrected meter reading

k_Q = Energy correction factor

N_{D,w} = Absorbed <u>Dose to Water</u>

calibration factor at <u>Cobalt 60</u>

energy

Chamber Calibration Factor N_{D,w} 60 co

- Obtain from ADCL
- Chamber waterproofing material:
 - 1 mm Acrylic (PMMA) wall
 - Provided by ADCL
 - Waterproof chambers
- Obtain both N_K , (N_X) , and $N_{D,W}$
 - Traceability to TG-21

$M = P_{ion}P_{TP}P_{elec}P_{pol}M_{raw}$ [C or rdg] (Eq 8)

P_{ion} = Collection efficiency correction

 P_{TP} = Temp-Press correction

P_{elec} = Electrometer factor

P_{pol} = Polarity Correction

M_{raw} = uncorrected charge reading

Pelec

- Electrometer Calibration factor [C/rdg]
- Previously included in Chamber calibration factor.
- Watch the powers of ten.

Pion Pulsed Beam

Pion
$$(V_H) = \frac{1.00 - \left(\frac{V_H}{V_L}\right)}{\frac{M_{raw}^H}{M_{raw}^L} - \left(\frac{V_H}{V_L}\right)}$$
 (Eq 11)
Pulsed

- V_H = normal operating potential of chamber
- V_L = reduced potential on chamber $V_L \le V_H / 2$
- M_{raw} = raw reading with full potential
- M_{raw} = raw reading with reduced potential

Polarity Correction

$$P_{pol} = \frac{M_{raw}^{+} - M_{raw}^{-}}{2M_{raw}}$$
 (Eq 9)

M⁺(M⁻) is the charge collected with positive (negative) polarity on the collector

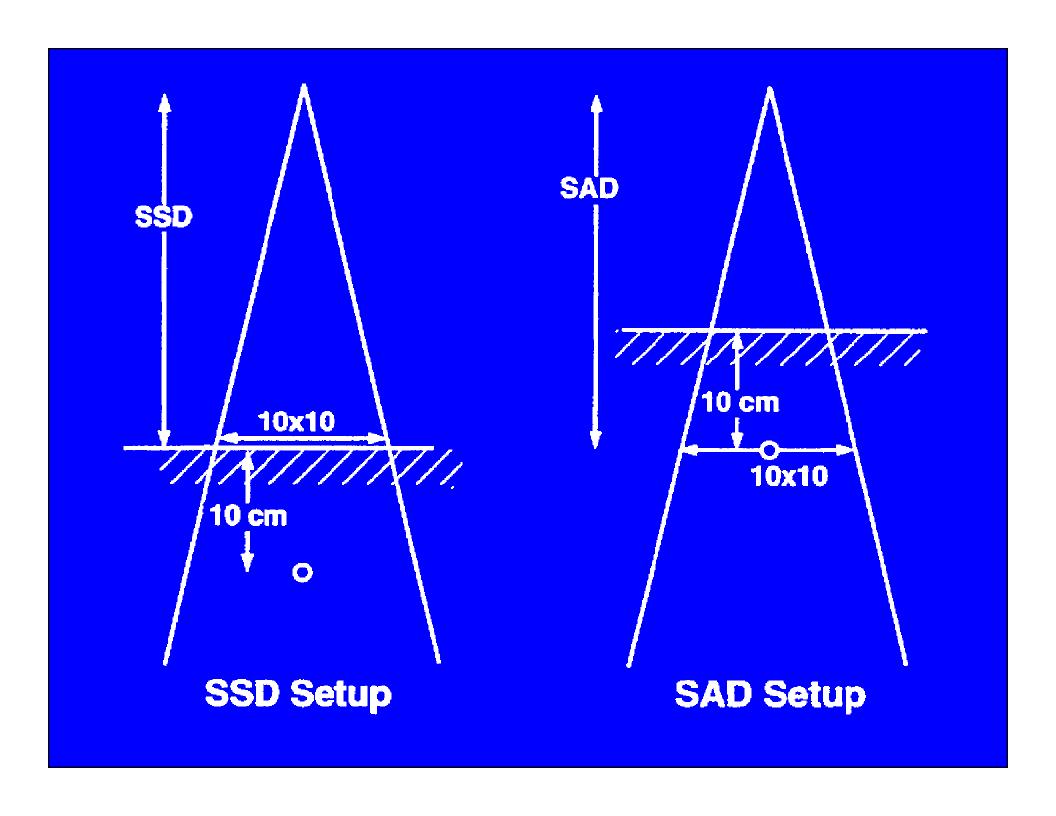
M_{raw} = charge collected with normal polarity

For Photons

$$K_{Q} = \frac{\frac{L}{\rho}}{\frac{L}{\rho}} | P_{repl} \cdot P_{wall} \cdot P_{cel} |_{evaluated at the energy Q}$$

$$K_{Q} = \frac{\frac{L}{\rho}}{\frac{L}{\rho}} | P_{repl} \cdot P_{wall} \cdot P_{cel} |_{evaluated at cobalt energy}$$

- P_{repl} and P_{wall} same as for TG-21
- P_{cel} corrects for the influence of the Al center electrode
- P_{repl} is weakly dependent on chamber diameter
- P_{wall} is strongly dependent on thimble materials, less dependent on exact dimensions


(See Table 1 and Figure 4 for values)

K_O for photons

- Similar chambers have similar P_{wall} & P_{cel,} so few k_O needed.
- TG-51 does not list values for my Chamber ???
 - Choose chamber in Protocol that has
 - Same wall material
 - Same center electrode material
 - Approximately same wall thickness
 - Similar length and diameter -- weak depend

Reference Conditions (Photons)

- in Water
- On Central Axis
- 10 cm depth (chamber center)
- 10cm x 10 cm field
 - SSD (field size defined at surface)
 - SAD (field size defined at depth)

Electron Equation

$$D_{w}^{Q} = M k_{Q} N_{D,w}^{60} Co$$

where
$$k_Q = P_{gr}^Q k_{R_{50}}$$
 (Eq 4)

and
$$\mathbf{k}_{\mathsf{R}_{50}} = \mathbf{k'}_{\mathsf{R}_{50}} \, \mathbf{k}_{\mathsf{ecal}}$$
 (Eq 5)

$$D_{w}^{Q} = MP_{gr}^{Q} k'_{R_{50}} k_{ecal} N_{D,w}^{60} Co}$$

For Electrons

P_{gr} = correction for gradient at the point of calibration (d_{ref})

$$P_{gr}^{Q} = \frac{M(d_{ref} + 0.5r_{cav})}{M_{raw}(d_{ref})}$$
(Eq 21)

NOTE: $M(d_{ref} + 0.5r_{cav})$ and $M(d_{ref})$ are the reading at the depth, $(d_{ref} + 0.5r_{cav})$ and d_{ref}

NOT the reading times the depth.

k_{ecal} Electrons

Modality conversion factor: Photon ⇒ electron

- carries $N_{D,w}^{60 \text{ Co}}$ into $N_{D,w}^{Q_{ecal}}$ [at R_{50} = 7.5cm]
- Allows for a specific electron-calibration factor to be introduced later.
- Includes L/ ρ , P_{cel}, and P_{repl} for R₅₀ = 7.5 cm & L/ ρ , P_{repl}, P_{wall}, and P_{cel} for Cobalt 60.
- Energy independent (actually a fixed energy)

Table 3 (cyl) Table 2 (pp)

Energy Dependent Factor - chamber specific

```
(Includes ratio of L/\rho \bullet P_{rep} \bullet P_{cel} for arbitrary electron energy to that for R_{50} = 7.5 cm)
```

• k_{R₅₀} well behaved (observed)

$$k'_{R_{50}}$$
 (cyl) = .9905 + 0.071e^{-(R50/3.67)} (Eq 19)

(cyl cham for 2cm $< R_{50} < 9$ cm), 0.2% error for Farmer chambers.

Fig 5 & 7 (cyl)

Fig 6 & 8 (pp)

For Electrons

$$k_{ecal} = \frac{\frac{L}{\rho}}{\frac{L}{\rho}}_{air}^{water} \bullet P_{repl} \bullet P_{cel} |_{evaluated at energy R_{50} = 7.5}$$

$$k'_{R_{50}} = \frac{\frac{L}{\rho}}{\frac{L}{\rho}}_{air}^{water} \bullet P_{repl} \bullet P_{wall} \bullet P_{cel} |_{evaluated at Cobalt 60}$$

$$k'_{R_{50}} = \frac{\frac{L}{\rho}}{\frac{L}{\rho}}_{air}^{water} \bullet P_{repl} \bullet P_{cel} |_{evaluated at the energy R_{50}}$$

$$\bullet P_{repl} \bullet P_{cel} |_{evaluated at energy R_{50} = 7.5}$$

Electrons:Reference Conditions

- Field Size:
 - \geq 10 cm x 10 cm for R₅₀ < 8.5 cm
 - \geq 20 cm x 20 cm for R₅₀ \geq 8.5 cm
- Reference Depth, d_{ref} $d_{ref} = 0.6R_{50} - 0.1$ [cm] (Eq 18)
- Nominal SSD (90 cm to 110 cm)

Beam Quality Specification

Photon: Beam Quality Specification

 $%dd(10)_{x}$

- % depth dose due only to photons (excluding electron contamination)
 10 cm x 10 cm at 100 cm SSD
- above 10 MV-- may be electron contamination. Need to remove the electrons (coming from collimators).

$%dd(10)_{x}$ from $%dd(10)_{Pb}$

- Measure %dd at 10 cm with 1 mm Pb foil:
 - 50 cm from surface (± 5 cm)

 $%dd(10)_x = [0.8905 + 0.00150 %dd(10)_{Pb}]%dd(10)_{Pb}$

- 30 cm from surface (± 1 cm)

 $%dd(10)_x = [0.8116+0.00264 %dd(10)_{Pb}]%dd(10)_{Pb}$

(Where: %dd(10)_{Pb} measured with1mm Pb foil)

DEPTHS ARE SHIFTED

$%dd(10)_{x}$ from $%dd(10)_{o}$

• Interim solution (error ≤ 0.4%)

$$%dd(10)_x = 1.267 [%dd(10)_o] - 20.0$$

$$[75\% < %dd(10)_o < 89\%]$$

Where: $%dd(10)_{o}$ measured with open beam

ALL DEPTHS ARE SHIFTED TO

EFFECTIVE POINT

Beam Quality Specification for Electron Beams

Specified by R₅₀

R₅₀ = depth (cm) at which dose falls to 50% of max for a field with full side scatter.

10 x 10 or 20 x 20 (R50 > 8.5)

```
R_{50} = 1.029 I_{50} - 0.06 \text{ (cm)} [I_{50} \le 10 \text{ cm}] (Eq.16)
```

$$R_{50} = 1.059 I_{50} - 0.37 (cm) [I_{50} > 10cm] (Eq 17)$$

 $\{|_{50} = \text{depth of } 50\% \text{ ionization}\}$

TG-51 Measurements

Photons:

- Search for Imax
- Place chamber at 10cm + 0.6 reav (with/without lead - for energy > 10 MV)
- Determine k_Q from %dd(10)_x
- Move chamber to calibration depth (physical 10 cm)
- Make measurements for M_{raw}, P_{pol}, and P_{ion}

TG-51 Measurements

Electrons:

- Look up k_{ecal} for your chamber.
- Search for I_{max} and I_{so} (use 0.5 r_{cav} shift)
- Determine R₅₀
- Determine d_{ref} and k'_{R50}
- Move chamber to physical d_{ref} (no shift)
- Measure P_{pol} and P_{ion}
- Move chamber to d_{ref} + 0.5 r_{cav}
- Calculate the gradient correction, P_{gr}

Regions of Confusion and Concern

- Water phantom
- 1 mm Acrylic cap
- Parallel Plate vs Cylindrical Chambers
- P_{pol}, P_{ion}
- Why d_{ref}
- Point of measurement
 - % dd
 - Beam Quality Specifications
 - Calibration

Phantoms

- Water only
 - Annual calibration (reference dosimetry)
- Plastics:
 - Weekly/Monthly
 - Compare with water at annual calibration.

Chamber Protection

- Waterproof Chambers
 - –no protective sleeve needed
- Other Chambers
 - -1 mm thick *Acrylic* protective sleeve
- Cap correction: ????

Chambers: parallel plate vs cylindrical

- Photons:
 - -Cylindrical Chambers: ONLY (effect of back scatter from insulator and body of P-P not understood)
- Electrons:
 - -Parallel Plate Chambers: RECOMMENDED
 - -Cylindrical Chambers: ACCEPTABLE
 - -P-P Chamber **required** for $R_{50} < = 2.6$ cm

Calibrate P-P Chamber

- ADCL's:
 - -TG-39, in water
 - -Cobalt 60
- User:
 - -TG-39 in water/plastic(?)
 - –high energy electron (R₅₀ ≈7.5 cm)
 - -compare with cylindrical
- Traceability of Factor?????

Polarity Correction

Watch the sign

Some situations: pol > signal ref depth -- not a problem $P_{pol} \sim 1.00$

$$P_{pol} = \frac{\left| M_{raw}^{+} \right| + \left| M_{raw}^{-} \right|}{2\left| M_{raw} \right|}$$

$$P_{ion} \ Pulsed Beam$$

$$P_{ion} \ (V_{H}) = \frac{1.00 - \left(\frac{V_{H}}{V_{L}}\right)}{\frac{M \ Faw}{M \ raw} - \left(\frac{V_{H}}{V_{L}}\right)} \tag{Eq 11}$$

= normal operating potential of chamber

= reduced potential on chamber - V_I <V_H / 2

= raw reading with full potential

= raw reading with reduced potential

(Precision < 0.4%)

I Recommend Weinhous & Meli Med Phys 11, 846-849, 1984 Almond Med Phys 8, 901-904, 1980

TG-21 Curve for $V_1 = V_{\perp}/2$

Equation for 60 Co in worksheet is wrong.

Why d_{ref} not d_{max}??

- K'_{R50} is smooth curve with low gradient
 - remember L/ρ has high gradient at low energies.
- d_{ref} is close to d_{max} for low energy e⁻
- %dd gradient is low for high energy e⁻
- avoid 2-D interpolation of L/ρ
- WARNING: For clinical use, correct to d_{max} using *clinical* %dd data

Effective point of measurement,

%dd,

beam quality specifiers,

dose gradients

Effective Point of Measurement

```
d_{eff} = d_{meas} - f(r_{cav})

f = 0.6 r_{cav} for photons

f = 0.5 r_{cav} for electrons

f = 0 for parallel plate
```

inner surface of front window

Chamber Position Cylindrical Chamber (hv & e⁻)

- Clinical depth dose:
 - -effective pt of measurement
- Beam quality specification:
 - -effective pt of measurement
- Calibration:
 - -Physical center of chamber
 - gradient correction included in k_Q

For Photons

$$k_{Q} = \frac{\frac{L}{\rho}}{\frac{L}{\rho}} \begin{vmatrix} water \\ air \end{vmatrix} \cdot P_{repl} \cdot P_{wall} \cdot P_{cel} \begin{vmatrix} evaluated at the energy Q \\ evaluated at cobalt energy Q \end{vmatrix}$$

$$\cdot P_{repl} \cdot P_{wall} \cdot P_{cel} \begin{vmatrix} evaluated at cobalt energy Q \\ evaluated at cobalt energy Q \end{vmatrix}$$

• P_{repl} = gradient correction

For Electrons

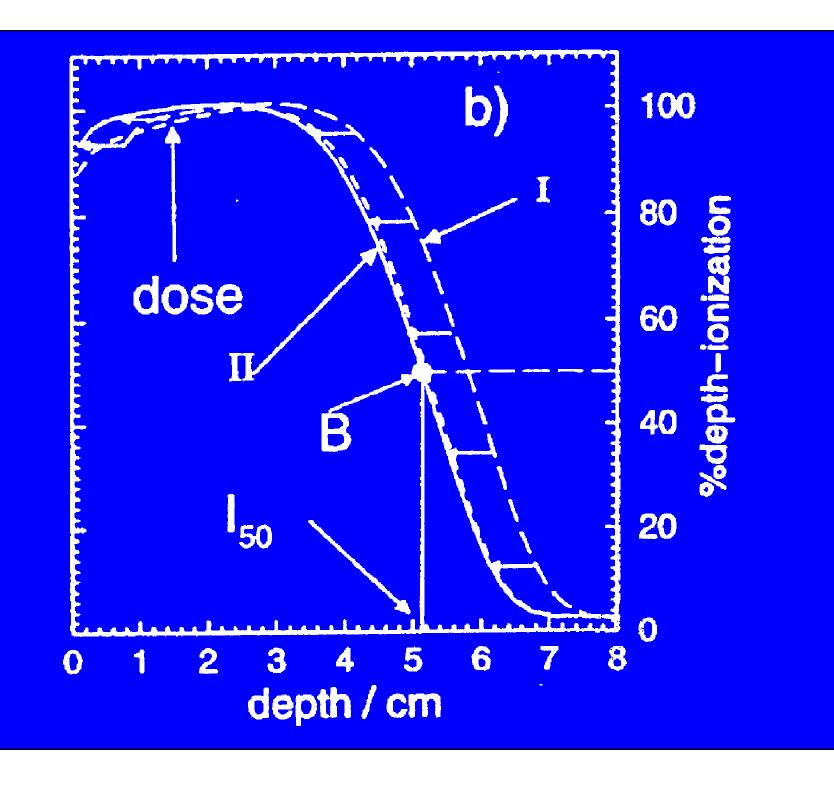
$$k_Q = P_{gr}^Q k'_{R50}$$
 (Eq 4)

$$P_{gr}^{Q} = \frac{M(d_{ref} + 0.5r_{cav})}{M_{raw}(d_{ref})}$$
(Eq 21)

Photons: Clinical % dd (new procedure)

- Measure % ionization
- Shift to effective point of measurement.
 - L/ρ and P_{wall} are ~ independent of depth

Use this value to correct dose from depth of calibration to other depths in phantom.


NOTE: This changes %dd values and shifts your d_{max} but does not change the gradient.

Electrons Clinical % dd Same as before

- Measure % ionization
- Shift to effective point of measurement
- Convert to dose -- using TG-25 (revised L/ρ)
- Use this value to shift from d_{ref} to d_{max}

Parallel Plate and diode need no shift Figure 1

Depth Dose Without Electron Contamination

- Measure %dd at 10 cm with 1 mm Pb foil:
 - 50 cm from surface

 $%dd(10)_x = [0.8905 + 0.00150 %dd(10)_{Pb}]%dd(10)_{Pb}$

Use percent depth dose,%dd,

not fractional depth dose, fdd.

Beam Quality Specification Photons

Specified by $[\%dd(10)_x]$

- -X-ray only %dd, 10 cm depth, 10 square
- -Measure I_{max} and I₁₀ at 10cm + f*r_{cav}
- -Use *only* to determine k_o
- –Use lead sheet for energies > 10MV (vague)
 - 1mm ± 20% (1/32" 3/64")
 - Place at 30 (± 1) cm or 50 (± 5) cm from SSD
 - Last material between collimator and phantom
 - remove lead and throw away %dd(10)_x
 - Interim equation to use without lead

Beam Quality Specification Electrons

Specified by R₅₀

R₅₀ ~ depth (cm) at which dose falls to 50% of max for full scatter field.

```
R_{50} = 1.029 I_{50} - 0.06 (cm) [I_{50} \le 10 cm]

R_{50} = 1.059 I_{50} - 0.37 (cm) [I_{50} > 10 cm]

\{I_{50} = depth of 50\% ionization\}
```

- May not agree with clinical depth dose
 - Use only to determine d_{ref} and k'_{R50}

Implementation

- Do Homework:
 - Make measurements
 - Determine Change in Dose to patient
 - If change exceeds 2.5% -- contact RPC
 - Choose a good date to change
- Inform everyone involved
- Make change

Expected Changes

• TG-51/TG-21 at ⁶⁰Co

• TG-51/TG-21 at other energies/modalities

Calculation of N_{D,w}/N_K for Cobalt-60

$$D(^{60}Co) = M \cdot N_{D,w} = M \cdot N_{gas} \cdot L/\rho \cdot P_{repl} \cdot P_{wall}$$

$$N_{K} = 0.8791 [Gy/R] N_{X}$$

$$\frac{N_{D,w}}{N_{K}} = \left[\frac{1}{0.879}\right] \left[\frac{N_{gas}}{N_{x}}\right] \left[P_{repl}\right] \left[P_{wall}\right] \left[\frac{L}{\rho}\right]_{air}^{water}$$

Comparison of Absorbed Dose and Air Kerma Calibration Factors

Chamber	$N_{D,w} / N_k = N_{D,w} / N_k$		Meas. / Calc.	
	(Meas.)	(Calc.)		
NEL (SN 1864)	1.100	1.088	1.011	
NEL (SN 1503)	1.102	1.088	1.013	
PTW (SN 1516)	1.099	1.086	1.012	
PTW (SN 1483)	1.099	1.086	1.012	
Capintec PR060	1.095	1.079	1.015	
Exradin A12	1.106	1.093	1.012	

Dose (TG-51)/Dose (TG-21)

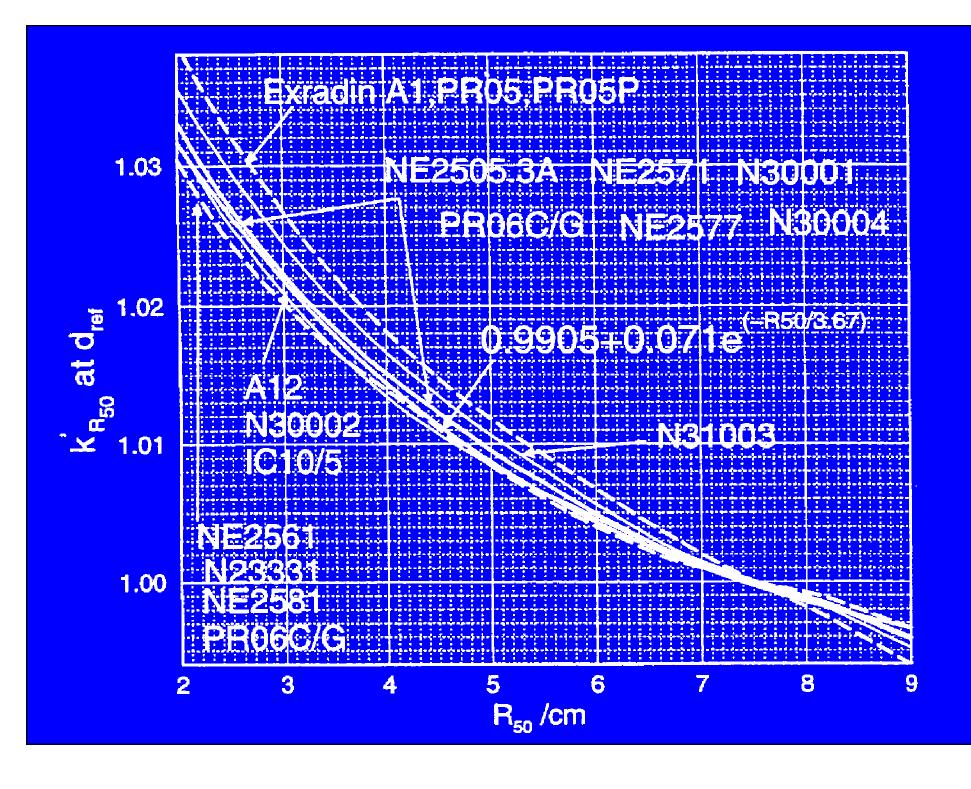
Chamber	⁶⁰ Co	6 MV hv	18 MV hv	9 MeV e	16 MeV e
NEL (2 chambers)	1.012	1.010	1.007	1.015	1.021
PTW N23333/ N30001	1.012	1.010	1.006	1.014	1.017
Capintec PR06C	1.015	1.011	1.004	1.014	1.015
Exradin A12	1.012	1.008	1.002	1.014	1.016

Note: The measurement uncertainty (1 SD) is less than \pm 0.4%.

THE UNIVERSITY OF TEXAS MINISTERS OF TEXAS MINISTER CANCER CENTER

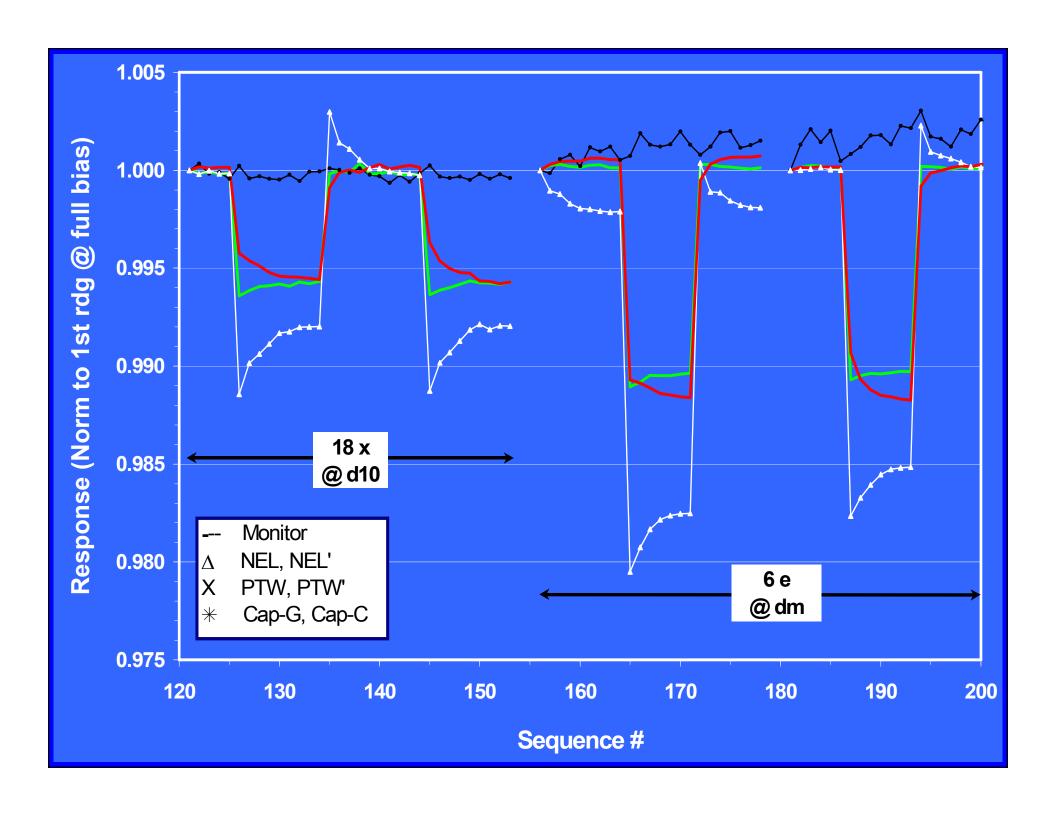
CAVEATS ABOUT DEPTH DOSE MEASUREMENTS

• Effective point of measurement:


$$d_{eff} = d_{meas} - f(r_{cav})$$

 $f = 0.6 r_{cav}$ for photons
 $f = 0.5 r_{cav}$ for electrons

- effective point of measurement is used to calculate %dd used for clinical data and for energy specification.
- for calibration: do not shift point of measurement, gradient is corrected for in k_O.


Learning Curve

- Photons --- rather short:
 - One night of concentration

- Electrons --- somewhat longer
- Several sessions to become comfortable

